scholarly journals Enhancing PCR Capacity To Detect ‘Candidatus Liberibacter asiaticus’ Utilizing Whole Genome Sequence Information

Plant Disease ◽  
2020 ◽  
Vol 104 (2) ◽  
pp. 527-532 ◽  
Author(s):  
Minli Bao ◽  
Zheng Zheng ◽  
Xiaoan Sun ◽  
Jianchi Chen ◽  
Xiaoling Deng

‘Candidatus Liberibacter asiaticus’ (CLas) is an unculturable α-proteobacterium associated with citrus Huanglongbing (HLB; yellow shoot disease). PCR procedures that accurately confirm or exclude CLas infection in citrus tissue/Asian citrus psyllid (ACP) samples are critical for HLB management. When CLas was described in 1994, a 23-bp signature oligonucleotide sequence (OI1) in the 16S rRNA gene (rrs, three genomic copies) was identified based on Sanger sequencing. OI1 contains single nucleotide polymorphisms (SNPs) distinguishing CLas from non-CLas species. The SNPs were used to design the primer HLBas, a key primer for a commonly used TaqMan PCR system (HLBas-PCR) for CLas detection. Recent developments in next-generation sequencing technology have led to the identification of 15 CLas whole genome sequence strains (WGSs). Analyses of CLas WGSs have generated a significant amount of biological information that could help to improve CLas detection. Utilizing the WGS information, this study re-evaluated the sequence integrity of OI1/HLBas and identified and/or confirmed a missing nucleotide G in the two primers. Replacement primers for OI1 and HLBas are proposed. At low cycle threshold (Ct) values (e.g., <30), HLBas-PCR remained reliable in CLas determination. At high Ct values (e.g., >30), HLBas-PCR alone was unreliable in differentiating whether samples contain low CLas titers or whether CLas is not present. The availability of ribonucleotide reductase (RNR)-PCR derived from the five-copy nrdB gene helped to resolve this problem. To further enhance low CLas titer detection, a 4CP-PCR system, based on a four-copy genomic locus, was developed. Evaluation of 107 HLB samples (94 citrus and 13 ACP) showed that 4CP-PCR was more sensitive than HLBas-PCR and shared similar sensitivity with RNR-PCR.

Plant Disease ◽  
2021 ◽  
Vol 105 (1) ◽  
pp. 199-201
Author(s):  
P. A. Silva ◽  
J. Huang ◽  
N. A. Wulff ◽  
Z. Zheng ◽  
R. Krugner ◽  
...  

‘Candidatus Liberibacter asiaticus’, an unculturable α-proteobacterium, is associated with citrus huanglongbing (HLB), a devastating disease threatening citrus production in Brazil and worldwide. In this study, a draft whole-genome sequence of ‘Ca. L. asiaticus’ strain 9PA from a sweet orange (cultivar Pera) tree collected in São Paulo State, Brazil, is reported. The 9PA genome is 1,231,881 bp, including two prophages, with G+C content of 36.7%. This is the first report of a whole-genome sequence of ‘Ca. L. asiaticus’ from Brazil or South America. The 9PA genome sequence will enrich ‘Ca. L. asiaticus’ genome resources and facilitate HLB research and control in Brazil and the world.


Plant Disease ◽  
2020 ◽  
Author(s):  
Jinming Lu ◽  
Hélène Delatte ◽  
Bernard Reynaud ◽  
George Andrew Charles Beattie ◽  
Paul Holford ◽  
...  

‘Candidatus Liberibacter asiaticus’ (CLas) is an insect-transmitted, phloem-restricted α-proteobacterium associated with huanglongbing (HLB). Here, we provide the whole genome sequence of CLas strain, ReuSP1, from its insect vector Diaphorina citri (Hemiptera: Liviidae) collected in La Réunion. The genome is composed of 1,230,064 bp and has a 36.5% G+C content. This study reports the first CLas genome sequence from La Réunion, which will add to CLas genome resources and help elucidate our understanding of the introduction pathway into La Réunion.


2017 ◽  
Vol 5 (15) ◽  
Author(s):  
Madhurababu Kunta ◽  
Zheng Zheng ◽  
Fengnian Wu ◽  
John V. da Graca ◽  
Jong-Won Park ◽  
...  

ABSTRACT We report here the draft genome sequence of “Candidatus Liberibacter asiaticus” strain TX2351, collected from Asian citrus psyllids in south Texas, USA. The TX2351 genome has a size of 1,252,043 bp, a G+C content of 36.5%, 1,184 predicted open reading frames, and 52 RNA genes.


2018 ◽  
Vol 6 (25) ◽  
Author(s):  
W. Cai ◽  
Z. Yan ◽  
J. Rascoe ◽  
M. J. Stulberg

The draft genome sequence of “Candidatus Liberibacter asiaticus” strain TX1712, obtained from a Texas citrus tree, is reported here. Strain TX1712 has a draft genome size of 1,203,333 bp, a G+C content of 36.4%, 1,230 predicted open reading frames, and 41 RNAs and comprises 97.4% of the psy62 reference genome.


Plant Disease ◽  
2020 ◽  
Author(s):  
Yongqin Zheng ◽  
jun guo ◽  
Xiaoling Deng ◽  
Zheng Zheng

“Candidatus Liberibacter asiaticus” (CaLas), an uncultured α-proteobacterium, is associated with citrus Huanglongbing (HLB, yellow shoot disease), a destructive disease threatening citrus production worldwide. Here, we reported the draft genome sequence of CaLas strain Myan16 from a HLB-affected lime tree in Myitkyina, Kachin State, Myanmar. The strain Myan16 genome is 1,229,102 bp with an average G+C content of 36.4%, along with a circular prophage: P-Myan16-2 (36,303 bp, Type 2). This is the first genome sequence of CaLas strain from Myanmar, which will enrich the current CaLas genome sequence database and facilitate HLB epidemiology research in Asia and world.


Plant Disease ◽  
2020 ◽  
Vol 104 (8) ◽  
pp. 2048-2050 ◽  
Author(s):  
Kehong Liu ◽  
Sagheer Atta ◽  
Xuejin Cui ◽  
Chunhua Zeng ◽  
Jianchi Chen ◽  
...  

‘Candidatus Liberibacter asiaticus’ (CLas) is an unculturable, phloem-restricted αProteobacteria, associated with citrus Huanglongbing (HLB), which is one of the most destructive diseases in citrus production worldwide. Here, we present the genome sequences of CLas strains PA19 and PA20 from HLB-affected kinnow trees in Multan, Punjab Province, Pakistan. The CLas genomes of PA19 and PA20 comprise 1,224,156 bp and 1,226,225 bp, respectively, with an average GC content of 36.4%. Both harbored the Type 2 prophage. In this study, we report two CLas genomes from Pakistan, which extends the sequence database of CLas and will contribute to CLas biology and HLB management.


Sign in / Sign up

Export Citation Format

Share Document