scholarly journals First Report of Botryosphaeria dothidea Causing Leaf Spot and Wilt on Celtis sinensis in China

Plant Disease ◽  
2021 ◽  
Vol 105 (1) ◽  
pp. 217
Author(s):  
Huizheng Wang ◽  
Shilong Wang ◽  
Yubin Lan
Plant Disease ◽  
2021 ◽  
Author(s):  
Dan Su ◽  
Wenhao Zhang ◽  
Rui Sun ◽  
Zhuting Zhang ◽  
Guozhong Lyu

Kadsura coccinea (Lem.) A. C. Smith, belonging to Schisandraceae, is an evergreen, woody climbing plant that is distributed widely in southwest China. Additionally, K.coccinea is used as an ethnic medicine and its main chemical components are lignin and terpenoids. The roots of the plant have been effectively used for treatment of cancer and dermatosis and as an anodyne to relieve pain (Song et al. 2010). In June 2019, a leaf spot disease on K. coccinea was first observed in a greenhouse in Qiandongnan Miao and Dong Autonomous Prefecture, Guizhou Province, China. Over 300 plants were surveyed in the three greenhouses, and nearly 70% of the plants were infected. The diseased plants grew poorly and appeared stunted, and severely affected plants died. The symptoms occurred on leaves as small brown spots initially and then developed into suborbicular or irregular-shaped brown necrotic lesions, which often displayed irregular concentric rings. Four diseased leaves from four symptomatic Kadsura coccinea plants were randomly collected for pathogen isolation. Diseased tissues were cut into about 2mm diameter fragments, surface sterilized with 75% ethanol for 15 s and 1% NaClO for 2 min, and then rinsed twice in sterilized distilled water. After being dried on sterilized filter paper, the fragments were placed on potato dextrose agar (PDA) and incubated at 25°C in the dark for 5 days. The same fungus was isolated in 95% of the samples. A representative isolate, F2020003 was used for morphological and molecular characterization. The colonies were initially white, gradually turning gray-green to dark gray after 7 days, with abundant gray aerial mycelium. Conidia were one-celled, hyaline, fusoid to ellipsoid and measured 24.3 ± 1.9 × 4.8 ± 0.7 µm (n = 50). The conidial morphology matched the description of Botryosphaeria dothidea (Slippers et al. 2004). To verify identity, the partial sequences of the internal transcribed spacer region, translation elongation factor 1 alpha genes and beta-tubulin, were amplified from isolate F2020003 with primers ITS1/ITS4 (GenBank accession no. MW111267), EF1-728F/EF1-986R (GenBank accession no. MW196739) and BT-2a/BT-2b (GenBank accession no. MW206378), respectively(Sun et al. 2014). The isolates were confirmed as B. dothidea based on morphological comparisons and BLAST searches (Zhai et al. 2014). To assess pathogenicity, five healthy leaves on each of the three 6-month-old healthy K. coccinea plants were wound inoculated with a sterilized needle. Mycelium plugs (4 mm in diameter) taken from a 5-day-old culture on PDA were inoculated on surface-sterilized leaves (sprayed with 75% ethanol). PDA plugs with no mycelium were used as a control. Plants with treated leaves were covered with plastic bags and incubated in a greenhouse at 25°C. The pathogenicity test was repeated three times. Within 4 days, all the inoculated points showed lesions similar to those previously observed in the greenhouse, whereas controls were asymptomatic. Fungi re-isolated from inoculated leaves were confirmed as B. dothidea on the basis of morphological and molecular characterization as described above. B. dothidea is a member of Botryosphaeriaceae, it has been reported to cause leaf spot on Celtis sinensis (Wang et al., 2020) and branch canker on Malosma laurina (Aguirre et al., 2018) in China. To our knowledge, this is the first report of B. dothidea causing leaf spot on K. coccinea in China. The identification of this pathogen will be helpful to prevent and control this disease in the future.


Plant Disease ◽  
2020 ◽  
Vol 104 (1) ◽  
pp. 282-282
Author(s):  
Y. N. Cai ◽  
K. Q. Wang ◽  
X. Zhang ◽  
Y. G. Li

2017 ◽  
Vol 23 (2) ◽  
Author(s):  
S. A. FIRDOUSI

During the survey of the forest fungal disease, of Jalgaon district, two severe leaf spot diseases on Lannae coromandelica and ( Ougenia dalbergioides (Papilionaceae) were observed in Jalgaon, forest during July to September 2016-17. The casual organism was identified as Stigmina lanneae and Phomopsis sp. respectively1-4,7. These are first report from Jalgaon and Maharashtra state.


Author(s):  
Juan Fan ◽  
Hong Bo Qiu ◽  
Hai Jiang Long ◽  
Wei Zhao ◽  
Xiao Long Xiang ◽  
...  
Keyword(s):  

Author(s):  
Yiping Cui ◽  
Aitian Peng ◽  
Xiaobing Song ◽  
Baoping Cheng ◽  
Jinfeng Ling ◽  
...  

Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1654-1654 ◽  
Author(s):  
A. L. Vu ◽  
M. M. Dee ◽  
J. Zale ◽  
K. D. Gwinn ◽  
B. H. Ownley

Knowledge of pathogens in switchgrass, a potential biofuels crop, is limited. In December 2007, dark brown to black irregularly shaped foliar spots were observed on ‘Alamo’ switchgrass (Panicum virgatum L.) on the campus of the University of Tennessee. Symptomatic leaf samples were surface-sterilized (95% ethanol, 1 min; 20% commercial bleach, 3 min; 95% ethanol, 1 min), rinsed in sterile water, air-dried, and plated on 2% water agar amended with 3.45 mg fenpropathrin/liter (Danitol 2.4 EC, Valent Chemical, Walnut Creek, CA) and 10 mg/liter rifampicin (Sigma-Aldrich, St. Louis, MO). A sparsely sporulating, dematiaceous mitosporic fungus was observed. Fungal plugs were transferred to surface-sterilized detached ‘Alamo’ leaves on sterile filter paper in a moist chamber to increase spore production. Conidia were ovate, oblong, mostly straight to slightly curved, and light to olive-brown with 3 to 10 septa. Conidial dimensions were 12.5 to 17 × 27.5 to 95 (average 14.5 × 72) μm. Conidiophores were light brown, single, multiseptate, and geniculate. Conidial production was polytretic. Morphological characteristics and disease symptoms were similar to those described for Bipolaris oryzae (Breda de Haan) Shoemaker (2). Disease assays were done with 6-week-old ‘Alamo’ switchgrass grown from seed scarified with 60% sulfuric acid and surface-sterilized in 50% bleach. Nine 9 × 9-cm square pots with approximately 20 plants per pot were inoculated with a mycelial slurry (due to low spore production) prepared from cultures grown on potato dextrose agar for 7 days. Cultures were flooded with sterile water and rubbed gently to loosen mycelium. Two additional pots were inoculated with sterile water and subjected to the same conditions to serve as controls. Plants were exposed to high humidity by enclosure in a plastic bag for 72 h. Bags were removed, and plants were incubated at 25/20°C with 50 to 60% relative humidity. During the disease assay, plants were kept in a growth chamber with a 12-h photoperiod of fluorescent and incandescent lighting. Foliar leaf spot symptoms appeared 5 to 14 days post-inoculation for eight of nine replicates. Control plants had no symptoms. Symptomatic leaf tissue was processed and plated as described above. The original fungal isolate and the pathogen recovered in the disease assay were identified using internal transcribed spacer (ITS) region sequences. The ITS region of rDNA was amplified with PCR and primer pairs ITS4 and ITS5 (4). PCR amplicons of 553 bp were sequenced, and sequences from the original isolate and the reisolated pathogen were identical (GenBank Accession No. JQ237248). The sequence had 100% nucleotide identity to B. oryzae from switchgrass in Mississippi (GU222690, GU222691, GU222692, and GU222693) and New York (JF693908). Leaf spot caused by B. oryzae on switchgrass has also been described in North Dakota (1) and was seedborne in Mississippi (3). To our knowledge, this is the first report of B. oryzae from switchgrass in Tennessee. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/, 28 June 2012. (2) J. M. Krupinsky et al. Can. J. Plant Pathol. 26:371, 2004. (3) M. Tomaso-Peterson and C. J. Balbalian. Plant Dis. 94:643, 2010. (4) T. J. White et al. Pages 315-322 in: PCR Protocols: a Guide to Methods and Applications. M. A. Innis et al. (eds), Acad. Press, San Diego, 1990.


Author(s):  
Shivannegowda Mahadevakumar ◽  
Yelandur Somaraju Deepika ◽  
Kandikere Ramaiah Sridhar ◽  
Kestur Nagaraj Amruthesh ◽  
Nanjaiah Lakshmidevi

Plant Disease ◽  
2019 ◽  
Vol 103 (3) ◽  
pp. 581
Author(s):  
B. Xia ◽  
C. T. Xu ◽  
J. K. Xu ◽  
Y. H. Wu ◽  
Q. Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document