scholarly journals First Detection of Puccinia hordei Virulence to Barley Leaf Rust Resistance Gene Rph3 and Combination with Virulence to Rph7 in North America

Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 838-838 ◽  
Author(s):  
M. N. Rouse ◽  
C. A. Griffey ◽  
W. S. Brooks

Barley leaf rust, caused by Puccinia hordei Otth., has been problematic in United States barley (Hordeum vulgare L.) production in the Mid-Atlantic coast region and California. During the early 1990s, P. hordei pathotypes with virulence to resistance gene Rph7 caused average yield losses from 6 to 16% (3). ‘Doyce’ barley was released in 2003 and was described as being resistant to leaf rust (2). Initially in April 2010 and subsequently in spring 2011 and 2012, high severities and infection responses were observed on experimental plots of ‘Doyce’ in Warsaw and Blacksburg, Virginia. Three single uredinial isolates of P. hordei were derived from collections made from ‘Doyce’ barley. The isolates were characterized for virulence to barley leaf rust resistance genes by inoculating at least two replicates of a barley leaf rust differential set including 12 Rph genes (1). Previous methods used for inoculation, incubation, and pathotyping were followed (1). Infection types were scored on a 0 to 4 scale where 2 and below indicated resistance and 3 and above indicated susceptibility (4). The three isolates collected from Doyce barley displayed large pustules with infection types 3,3+ to cultivars Estate (Rph3) and Cebada Capa (Rph7). Avirulent isolates of P. hordei displayed infection types 0; to 0;1c to Estate and ;n to 0;1n to Cebada Capa (1). The data indicated that all three isolates were virulent to both barley leaf rust resistance genes Rph3 and Rph7. Though combined Rph3 and Rph7 virulence has been reported in the Mediterranean region, this is the first report of Rph3 virulence in North America. These isolates of P. hordei are virulent to important sources of resistance to barley leaf rust and threaten barley production in environments conducive for disease development in North America. References: (1) W. S. Brooks et al. Phytopathology 90:1131, 2000. (2) W. S. Brooks et al. Crop Sci. 45:792, 2005. (3) C. A. Griffey et al. Plant Dis. 78:256, 1994. (4) M. N. Levine and W. J. Cherewick. U.S. Dept. Agric. Tech. Bull. 1056, 1952.

2007 ◽  
Vol 126 (5) ◽  
pp. 458-463 ◽  
Author(s):  
J. A. Mammadov ◽  
W. S. Brooks ◽  
C. A. Griffey ◽  
M. A. Saghai Maroof

2009 ◽  
Vol 99 (6) ◽  
pp. 750-758 ◽  
Author(s):  
M. E. Ordoñez ◽  
J. A. Kolmer

Wheat leaf rust caused by Puccinia triticina is widely distributed in the wheat growing regions of the United States and Canada, and is subject to selection for virulence phenotype by leaf rust resistance genes in wheat cultivars. The objective of this study was to determine the number of genetically differentiated groups of P. triticina that are currently present in North America. In total, 148 isolates of P. triticina from the 1980s to 2005 were collected from wheat-growing regions of the United States and Canada and tested for virulence on 20 lines of wheat with single genes for leaf rust resistance and for molecular genotype with 23 simple sequence repeat (SSR) markers. In total, 91 virulence phenotypes and 65 SSR genotypes were found. After removal of isolates with identical virulence and SSR genotypes, 125 isolates were included for further analysis. Bayesian cluster analysis indicated five different groups of isolates based on SSR genotypes that also differed for virulence to leaf rust resistance genes Lr2a, Lr2c, Lr3bg, Lr17, and Lr28. Isolates avirulent to Lr14a and Lr20 that have increased since 2003 had SSR genotypes identical or similar to older isolates in one of the five groups, indicating that these isolates were derived by mutation from the previously existing population of P. triticina. The representative collection of P. triticina isolates had characteristics consistent with an asexual dikaryotic population of genetically differentiated groups of SSR genotypes with high levels of heterozygosity and disequilibrium within which stepwise mutation at avirulence or virulence loci regularly occurs.


2016 ◽  
Vol 4 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Resham Babu Amgai ◽  
Sumitra Pantha ◽  
Madan Raj Bhatta

Barley (Hordeum vulagare L) is the major crop for the people living in the high hills and mountainous region of Nepal. Leaf rust (caused by Puccinia hordei) is one of the major production threats for barley cultivation. A lot of variation can be observed on Nepalese barley accessions with respect to leaf rust resistance characteristics. Two hundred and forty one barley accessions were screened for leaf rust resistance characteristics on heading stage at Khumaltar, Lalitpur, Nepal. Among them, one hundred and nine Nepalese barley accessions showing promising for disease resistance were screened using six SSR markers linked to leaf rust resistance genes. Bonus and Local Jau was used as the resistant and susceptible check respectively. Leaf rust resistance genes Rph1, Rph2, Rph3, Rph7, QBLR-P and QTL on chromosome 5HS were detected on Nepalese barley accessions using respective SSR markers. Eight Nepalese barley accessions showed presence of three and more leaf rust resistant genes. The poor relationship between the field disease resistance and molecular markers linked with specific leaf rust resistance gene proved that Nepalese barley gene pool contains other leaf resistance genes.


1998 ◽  
Vol 88 (1) ◽  
pp. 76-80 ◽  
Author(s):  
I. G. Borovkova ◽  
Y. Jin ◽  
B. J. Steffenson

Barley lines Hor 2596 and Triumph are the sources of leaf rust resistance genes Rph9 and Rph12, respectively. An allelism test was performed with F2 progeny of the cross Triumph/Hor 2596 inoculated with Puccinia hordei. No recombinants were found in a population of 3,858 progeny, indicating Rph9 and Rph12 are alleles. Molecular and morphological markers were used to identify the chromosomal location of these genes in the crosses Bowman/Hor 2596 and Triumph/I91-533-va. A linkage was detected between Rph9 and the flanking sequence-tagged site (STS) markers ABC155 and ABG3 on chromosome 7(5H) at a distance of 20.6 and 20.1 centimorgans (cM), respectively, and to the microsatellite marker dehydrin-9 (HVDHN9) at a distance of 10.2 cM in the Bowman/ Hor 2596 cross. Analysis of isozymes in bulks of the same population showed that Rph9 may be closely linked to the Est9 locus on chromosome 7(5H). The Rph12 locus was linked to the morphological trait locus va (controlling variegated leaf color) on chromosome 7(5H) at a distance of 22.6 cM in the Triumph/I91-533-va cross. Rph12 also was linked with STS marker ABC155 (24.4 cM) and RAPD marker OPA19 (1.5) (17.8 cM). These data indicate that Hor 2596 and Triumph carry a leaf rust resistance gene at the same locus on the long arm of chromosome 7(5H) of barley.


Crop Science ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 282-302 ◽  
Author(s):  
Matthew J. Martin ◽  
Oswaldo Chicaiza ◽  
Juan C. Caffarel ◽  
Ahmad H. Sallam ◽  
Arnis Druka ◽  
...  

2019 ◽  
Vol 14 (1) ◽  
pp. 327-334 ◽  
Author(s):  
Agnieszka Tomkowiak ◽  
Roksana Skowrońska ◽  
Alicja Buda ◽  
Danuta Kurasiak-Popowska ◽  
Jerzy Nawracała ◽  
...  

AbstractTen leading wheat cultivars originating from the Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute (Poland) and the Department of Gene Bank (Czech Republic) were used to establish a field experiment in 2017 and 2018 at the Dłoń Experimental Farm. The analyzed wheat genotypes were characterized by diversified field resistance to leaf rust. Jubilatka, Thatcher and Sparta were the most resistant cultivars in field conditions in both 2017 and 2018. The aim of the work was to identify the Lr11, L13, Lr16 and Lr26 genes encoding resistance to leaf rust using molecular SSR markers (wmc24, wmc261, Xgwm630, Xwmc764 and P6M12) and to develop multiplex PCR conditions to accelerate identification of these genes. Markers of three leaf rust resistance genes have been identified simultaneously in these cultivars. Jubilatka, Thatcher and Sparta cultivars may serve as a good source of the analyzed leaf rust resistance genes. In addition, multiplex PCR conditions have been developed for the simultaneous identification of the Lr11 and Lr16 and Lr11 and Lr26 gene pairs.


2011 ◽  
Vol 40 (No. 2) ◽  
pp. 31-35 ◽  
Author(s):  
P. Bartoš ◽  
J. Ovesná ◽  
A. Hanzalová ◽  
J. Chrpová ◽  
V. Dumalasová ◽  
...  

The presence of a translocation from Aegilops ventricosa carrying the genes for rust resistance Yr17, Lr37 and Sr38 was analysed in recently registered, mostly western European wheat cultivars in the Czech Republic. By means of a PCR marker the presence of the translocation was determined in cvs. Bill, Clarus, Clever, Corsaire, Rapsodia, and in the Czech cv. Rheia. Novel are the data for cvs. Rapsodia, Clarus and Rheia. Infection tests indicated the presence of additional leaf rust resistance genes in cultivars with the translocation, except in cv. Rheia. Segregating progenies of six crosses between cv. Renan possessing Lr37and different cultivars susceptible to leaf rust were tested for the presence of the translocation with Yr17, Lr37 and Sr38 by an infection test as well as by a molecular marker. High coincidence between the results from infection tests and those by the marker has been proved.  


Sign in / Sign up

Export Citation Format

Share Document