scholarly journals First Report of Fusarium Wilt on Cavendish Bananas, Caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (VCG 01213/16), in Vietnam

Plant Disease ◽  
2018 ◽  
Vol 102 (2) ◽  
pp. 448-448 ◽  
Author(s):  
T. N. Hung ◽  
N. Q. Hung ◽  
D. Mostert ◽  
A. Viljoen ◽  
C. P Chao ◽  
...  
Plant Disease ◽  
2018 ◽  
Vol 102 (12) ◽  
pp. 2655 ◽  
Author(s):  
M. Maymon ◽  
U. Shpatz ◽  
Y. M. Harel ◽  
E. Levy ◽  
G. Elkind ◽  
...  

Plant Disease ◽  
2018 ◽  
Vol 102 (2) ◽  
pp. 446-446 ◽  
Author(s):  
H. C. Halpern ◽  
A. A. Bell ◽  
T. A. Wagner ◽  
J. Liu ◽  
R. L. Nichols ◽  
...  

Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 694-694 ◽  
Author(s):  
F. García-Bastidas ◽  
N. Ordóñez ◽  
J. Konkol ◽  
M. Al-Qasim ◽  
Z. Naser ◽  
...  

Fusarium wilt or Panama disease of banana, caused by Fusarium oxysporum f. sp. cubense (Foc), is among the most destructive plant diseases (3). Race 1 ravaged ‘Gros Michel’-based export trades until the cultivar was replaced by resistant Cavendish cultivars. However, a new variant of Foc, tropical race 4 (TR4), was identified in Southeast Asia in 1992 and has spread throughout the region (3). Cavendish clones, which are most important in subsistence and export production, are among the wide range of cultivars that are affected, and there is a huge concern that TR4 will further disseminate in Africa since its presence was announced in November 2013 and move into Latin America, thereby threatening other vital banana-growing regions. In Jordan, Cavendish bananas are produced on 1,000 to 1,500 ha in the Jordan Valley (32°N, 35.5°E). In 2006, symptoms of Fusarium wilt were observed and sampled for the isolation of Foc. On half-strength PDA amended with 100-ppm streptomycin sulfate, pale salmon-colored colonies with floccose mycelia developed consistently from surface-disinfested xylem. Single microconidia from these colonies were transferred to half-strength PDA, and conidia and mycelia from these monospore colonies were stored at –80°C in 15% glycerol. On banana leaf agar (Co60-irradiated leaf tissue on water agar), isolates resembled F. oxysporum phenotypically by producing infrequent three- to five-celled macroconidia, copious, usually aseptate microconida on monophialides, and terminal and intercalary chlamydospores after 2 weeks (2). With nitrate-nonutilizing (nit) mutants and testers for different vegetative compatibility groups (VCGs), each of seven examined monospore isolates were placed in VCG 01213, which contains only strains of TR4 (3). Total DNA was extracted from six isolates and PCR analyses, which confirmed their identity as TR4 (1). Subsequently, one of the isolates (JV11) was analyzed for pathogenicity. Inoculum production and inoculation were according to (1) by dipping (30 min) root-wounded 10-week-old plants of the Cavendish cv. Grand Naine in 2 liters of spore suspension (1.0 × 106 spores/ml). Inoculated plants were then placed in sand in 3-liter pots under 28°C, 70% relative humidity, and a 16/8-h light/darkness photoperiod. Sets of three plants were each treated with either JV11 or two TR4 controls (isolate II-5 and a strain isolated from an affected Cavendish plant in Mindanao, Philippines, both of which were diagnosed as TR4 by PCR and pathogenicity analyses). Control sets were either treated with race 1 originating from Cruz das Almas, Bahia, Brazil (1), or water. After 2 weeks, plants inoculated with JV11 and TR4 controls produced typical symptoms of Fusarium wilt. After 4 weeks, tissue was collected from all plants and plated on Komada's medium. TR4 was directly confirmed by PCR (1), either directly from symptomatic plants (JV11 and TR4 controls), or from isolates that were recovered from these plants. Nothing was re-isolated from race 1 inoculated plants and water controls, which remained asymptomatic. This is the first report of TR4 affecting Cavendish outside Southeast Asia, is its northernmost outbreak, and represents a dangerous expansion of this destructive race. Currently, 80% of the Jordan Valley production area is affected by Fusarium wilt, and 20 to 80% of the plants are affected in different farms. References: (1) M. A. Dita et al. Plant Pathol. 59:348, 2010. (2) J. F. Leslie and B. A. Summerell. The Fusarium Lab Manual. Blackwell, Ames, 2006. (3) R. C. Ploetz. Phytopathology 96:653, 2006.


Plant Disease ◽  
2019 ◽  
Vol 103 (5) ◽  
pp. 1022-1022 ◽  
Author(s):  
T. Damodaran ◽  
V. K. Mishra ◽  
S. K. Jha ◽  
R. Gopal ◽  
S. Rajan ◽  
...  

Plant Disease ◽  
2020 ◽  
Vol 104 (2) ◽  
pp. 588-588 ◽  
Author(s):  
Y. Zhu ◽  
P. A. Lujan ◽  
T. Wedegaertner ◽  
R. Nichols ◽  
A. Abdelraheem ◽  
...  

Plant Disease ◽  
2020 ◽  
Author(s):  
Raman Thangavelu ◽  
Gopi Muthukathan ◽  
Periaswamy Pushpakanth ◽  
Loganathan Murugan ◽  
Esack Edwin Raj ◽  
...  

Fusarium wilt caused by Fusarium oxysporum f.sp. cubense (Foc) is the most devastating disease affecting commercial and subsistence cultivation of banana (Musa spp.) worldwide. Generally, the Cavendish bananas are resistant to Foc race 1 that destroyed cv. ‘Gros Michel’ (AAA) and susceptible to tropical race 4 (TR4), which is causing severe epidemics in different banana-growing countries including India (Thangavelu et al. 2019). In 2019, a roving survey was conducted in major banana growing states of India such as Bihar, Uttar Pradesh, Gujarat and Tamil Nadu to assess the incidence of Fusarium wilt disease in Cavendish bananas and also to characterize the pathogens by different methods including Vegetative Compatibility Grouping (VCG) and molecular methods. The Fusarium wilt incidence in cv. Grand Naine (Cavendish group-AAA) was 6-65% in Bihar, 30-45% in Uttar Pradesh, 5-15% in Gujarat and 15- 21% in Tamil Nadu. For characterization, a total of 61 samples from the Fusarium wilt infected Cavendish bananas were collected and single spore culture of Foc was obtained. The morphological characterization revealed the presence of one to two oval- to kidney-shaped cells in false heads and sickle-shaped macroconidia and a foot-shaped basal cell. The pathogenicity was demonstrated by adopting randomized block design with five replications on cv. Grand Naine. The Koch’s postulate was successfully completed by re-isolation of the inoculated Foc pathogen and characterization by PCR method. The VCG analysis carried out using nit–M testers of all known VCGs indicated the presence of VCG 0125 from the Foc samples collected from cv. Grand Naine grown in Uttar Pradesh (Siswabazar of Maharakanj district) and Tamil Nadu (Cumbum of Theni district), VCG 01220 from the Foc samples collected from cv. Grand Naine grown in Uttar Pradesh (Siswabazar of Maharakanj district) and Gujarat (Kamrej of Surat district,) and VCG 01213/16 from Foc samples collected from Uttar Pradesh (Siswabazar of Maharakanj district) and Bihar (Falka village of Katihar district) . The molecular confirmation of these VCGs 0125, and 01220 (Foc R1) isolates was carried out by PCR method using the primer set SIX6b_210_F and SIX6b_210_R (Carvalhais et al. 2019) for Foc R1, primer sets Foc TR4-F & Foc TR4 –R (Dita et al. 2010) for Foc TR4 and primer set Foc-1/Foc -2 (Lin et al. 2009) for Race 4. The results showed that only the primer set for Foc R1 has generated the expected amplicon size of 210 bp in the Foc isolates of VCG 0125 and 01220. Besides, the sequencing of Translation Elongation Factor (TEF) 1-α gene and BLAST searches in Genbank for the representative Foc isolates of VCG 0125 (Genbank no. MW 286800) showed 99.84% similarity to Foc R1 (KX365393.1) and Foc isolates of VCG 01220 (Genbank no. MW 286803) showed 99.69% similarity to Foc R1 (KX365413.1). Further, a phylogenetic analysis performed using the TEF1-α gene sequences showed that the Foc race 1 isolates (VCGs 0125 and 01220) from India were grouped with known Foc race 1 isolates from Tanzania and Australia. Based on the experimental results the study has confirmed the presence of VCGs 0125 and 01220 of Foc Race 1 in cv. Grand Naine in India. As these VCGs are most widely distributed and do not found to infect Cavendish bananas so far (Mostert et al. 2017), this report is very important from the quarantine and management perspectives. To the best of our knowledge, this is the first report of the occurrence of VCGs 0125 and 01220 of Foc Race 1 in cv. Grand Naine in India.


Plant Disease ◽  
1999 ◽  
Vol 83 (7) ◽  
pp. 694-694 ◽  
Author(s):  
S. N. Smith ◽  
D. M. Helms ◽  
S. R. Temple ◽  
C. Frate

Fusarium wilt of blackeyed cowpeas has been known in California since the 1930s, and breeding for resistance to this disease pathogen has been a continuous effort. During the 1960s and 1970s, California Blackeye 5 (CB 5) cowpea (Vigna unguiculata L. Walp.), a widely grown cultivar of the time, became increasingly diseased by Fusarium oxysporum f. sp. tracheiphilum (Fot) Race 3 (2) throughout the growing regions of California. University of California cultivars CB 46 and CB 88 (1) were developed for resistance to Fot Races 1, 2, and 3. CB 46 is currently the principal blackeye cultivar grown on the majority of the acreage in the San Joaquin Valley. In 1989, a new race we designate “Fot Race 4” was isolated from wilted plants at a single field site in Stanislaus County. In years prior to identification, Fot Race 4 had caused severe wilt of CB 46 and CB 88 in this field. Even though the new Fot Race 4 remained confined to a small area for a number of years, sources of host plant resistance to Fot Race 4 were identified, hybridized, and screened, resulting in new progeny with desirable commercial agronomic characteristics. As observed in Stanislaus County, F. oxysporum f. sp. tracheiphilum Race 4 has the potential to cause serious crop damage, depending on virulence and soil inoculum levels, which may vary from year to year. In 1997 and 1998, an entirely different area in the southern San Joaquin Valley, about 140 miles from the original site in Stanislaus County, was found to have plants infected with Fot Race 4. Diseased plants were collected from patches in three separate CB 46 or CB 88 field sites in Tulare County. About 30 cultures were isolated from the diseased plants, which showed stunting, yellowing, and vascular discoloration. In greenhouse fusarium dip tests CB 46, CB 88, CB 5, and several Fot Race 4 resistant breeding lines were inoculated with all the collected isolates and evaluated. CB 46, CB 88, and CB 5 proved to be susceptible to these isolates, showing typical Fot Race 4 symptoms. The Fot Race 4 pathogen was then reisolated from greenhouse-grown, diseased stem tissue of CB 46, CB 88, and CB 5. These findings emphasize the importance of vigilance and necessity of continual disease surveys. They serve as an early alert for the University of California breeding program, and validate local cooperation with University of California Extension Farm Advisors. As a result of this effort new cultivar candidates with resistance to Fot Race 4 are in the final phases of multi-year commercial testing. References: (1) D. M. Helms et al. Crop Sci. 31:1703, 1991. (2) K. S. Rigert and K. W. Foster. Crop Sci. 27:220, 1987.


Plant Disease ◽  
2017 ◽  
Vol 101 (1) ◽  
pp. 249-249 ◽  
Author(s):  
T. Duvnjak ◽  
A. Sudaric ◽  
M. Matosa Kocar ◽  
J. Cosic ◽  
K. Vrandecic

Sign in / Sign up

Export Citation Format

Share Document