Combating Fusarium wilt of banana by developing cultivars with resistance to Fusarium oxysporum f. sp. cubense tropical race 4

2020 ◽  
pp. 57-66
Author(s):  
C.Y. Li ◽  
G.J. Yi ◽  
C.H. Hu ◽  
Q.S. Yang ◽  
F.C. Bi ◽  
...  
2006 ◽  
Vol 96 (6) ◽  
pp. 653-656 ◽  
Author(s):  
Randy C. Ploetz

Fusarium wilt of banana (also known as Panama disease) is caused by Fusarium oxysporum f. sp. cubense. Where susceptible cultivars are grown, management is limited to the use of pathogen-free planting stock and clean soils. Resistant genotypes exist for some applications, but resistance is still needed in other situations. Progress has been made with this recalcitrant crop by traditional and nontraditional improvement programs. The disease was first reported in Australia in 1876, but did the greatest damage in export plantations in the western tropics before 1960. A new variant, tropical race 4, threatens the trades that are now based on Cavendish cultivars, and other locally important types such as the plantains. Phylogenetic studies indicate that F. oxysporum f. sp. cubense had several independent evolutionary origins. The significance of these results and the future impact of this disease are discussed.


2015 ◽  
Vol 105 (12) ◽  
pp. 1512-1521 ◽  
Author(s):  
Randy C. Ploetz

Banana (Musa spp.) is one of the world’s most important fruits. In 2011, 145 million metric tons, worth an estimated $44 billion, were produced in over 130 countries. Fusarium wilt (also known as Panama disease) is one of the most destructive diseases of this crop. It devastated the ‘Gros Michel’-based export trades before the mid-1900s, and threatens the Cavendish cultivars that were used to replace it; in total, the latter cultivars are now responsible for approximately 45% of all production. An overview of the disease and its causal agent, Fusarium oxysporum f. sp. cubense, is presented below. Despite a substantial positive literature on biological, chemical, or cultural measures, management is largely restricted to excluding F. oxysporum f. sp. cubense from noninfested areas and using resistant cultivars where the pathogen has established. Resistance to Fusarium wilt is poor in several breeding targets, including important dessert and cooking cultivars. Better resistance to this and other diseases is needed. The history and impact of Fusarium wilt is summarized with an emphasis on tropical race 4 (TR4), a ‘Cavendish’-killing variant of the pathogen that has spread dramatically in the Eastern Hemisphere.


Plant Disease ◽  
2018 ◽  
Vol 102 (2) ◽  
pp. 448-448 ◽  
Author(s):  
T. N. Hung ◽  
N. Q. Hung ◽  
D. Mostert ◽  
A. Viljoen ◽  
C. P Chao ◽  
...  

Plant Disease ◽  
1999 ◽  
Vol 83 (7) ◽  
pp. 694-694 ◽  
Author(s):  
S. N. Smith ◽  
D. M. Helms ◽  
S. R. Temple ◽  
C. Frate

Fusarium wilt of blackeyed cowpeas has been known in California since the 1930s, and breeding for resistance to this disease pathogen has been a continuous effort. During the 1960s and 1970s, California Blackeye 5 (CB 5) cowpea (Vigna unguiculata L. Walp.), a widely grown cultivar of the time, became increasingly diseased by Fusarium oxysporum f. sp. tracheiphilum (Fot) Race 3 (2) throughout the growing regions of California. University of California cultivars CB 46 and CB 88 (1) were developed for resistance to Fot Races 1, 2, and 3. CB 46 is currently the principal blackeye cultivar grown on the majority of the acreage in the San Joaquin Valley. In 1989, a new race we designate “Fot Race 4” was isolated from wilted plants at a single field site in Stanislaus County. In years prior to identification, Fot Race 4 had caused severe wilt of CB 46 and CB 88 in this field. Even though the new Fot Race 4 remained confined to a small area for a number of years, sources of host plant resistance to Fot Race 4 were identified, hybridized, and screened, resulting in new progeny with desirable commercial agronomic characteristics. As observed in Stanislaus County, F. oxysporum f. sp. tracheiphilum Race 4 has the potential to cause serious crop damage, depending on virulence and soil inoculum levels, which may vary from year to year. In 1997 and 1998, an entirely different area in the southern San Joaquin Valley, about 140 miles from the original site in Stanislaus County, was found to have plants infected with Fot Race 4. Diseased plants were collected from patches in three separate CB 46 or CB 88 field sites in Tulare County. About 30 cultures were isolated from the diseased plants, which showed stunting, yellowing, and vascular discoloration. In greenhouse fusarium dip tests CB 46, CB 88, CB 5, and several Fot Race 4 resistant breeding lines were inoculated with all the collected isolates and evaluated. CB 46, CB 88, and CB 5 proved to be susceptible to these isolates, showing typical Fot Race 4 symptoms. The Fot Race 4 pathogen was then reisolated from greenhouse-grown, diseased stem tissue of CB 46, CB 88, and CB 5. These findings emphasize the importance of vigilance and necessity of continual disease surveys. They serve as an early alert for the University of California breeding program, and validate local cooperation with University of California Extension Farm Advisors. As a result of this effort new cultivar candidates with resistance to Fot Race 4 are in the final phases of multi-year commercial testing. References: (1) D. M. Helms et al. Crop Sci. 31:1703, 1991. (2) K. S. Rigert and K. W. Foster. Crop Sci. 27:220, 1987.


Plant Disease ◽  
2018 ◽  
Vol 102 (12) ◽  
pp. 2655 ◽  
Author(s):  
M. Maymon ◽  
U. Shpatz ◽  
Y. M. Harel ◽  
E. Levy ◽  
G. Elkind ◽  
...  

2016 ◽  
Vol 9 (2) ◽  
pp. 66
Author(s):  
Deden Sukmadjaja ◽  
Ragapadmi Purnamaningsih ◽  
Tri P. Priyatno

<p>Fusarium wilt of banana (Musa spp.) caused by<br />Fusarium oxysporum f. sp. cubense (Foc) is the most serious<br />problem faced in banana cultivation in terms of plant<br />productivity and fruit quality. Mutation breeding is one of the<br />alternative method that can be applied in producing new<br />banana cultivar. Mutants can be induced by chemical<br />mutagen such as ethyl methane sulfonate (EMS) followed by<br />in vitro selection and then evaluation of the mutants to<br />fusarium wilt disease in glasshouse and Foc infected field.<br />The aim of this research was obtained EMS induced and in<br />vitro selected mutants of banana var. Ambon Kuning and<br />evaluated Foc disease resistant clones in glasshouse and<br />Foc infected field. The first step to obtain the explants for<br />this research was initiation and formation of multiple bud<br />clumps (MBC) using MS basal media supplemented with 5,<br />10, and 20 mg/l of benzyladenin. Plant regeneration of MBC<br />was also studied by using MS media containing 0, 0.2, and 1<br />mg/l of benzyladenin. To induce mutagenesis, MBC was<br />soaked in 0.1, 0.3, and 0.5% (v/v) EMS for 1, 2, and 3 hours.<br />The assesment of resistant MBC mutants to Fusarium<br />phytotoxin was conducted by using fusaric acid (FA) as<br />selection agent in concentration of 30, 45, and 60 ppm.<br />Putative mutant plants produced by in vitro selection were<br />further tested using spore solution of Foc race 4 in<br />glasshouse. Meanwhile, Foc resistance assesment in the<br />infected field was conducted in Pasirkuda Experimental<br />Station, Bogor Agricultural University. The results showed<br />that MBC can be formed in MS basal media supplemented<br />with 10 or 20 mg/l benzyladenin. The EMS played a role in<br />obtaining mutants by producing 68 MBC putative mutants<br />tolerant to Foc based on FA selection. Further evaluation in<br />the glasshouse was obtained 64 Foc resistant plants from<br />391 putative mutants produced by in vitro selection.<br />Evaluation in the Foc infected field showed six clones<br />survived until generative phase (12 month of age).</p>


Pathogens ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 43 ◽  
Author(s):  
Arfe Castillo ◽  
Cecirly Puig ◽  
Christian Cumagun

Philippine banana is currently threatened by Fusarium oxysporum f. sp. cubense Tropical Race 4 (FocR4). This study investigated the use of Trichoderma harzianum pre-treated with Glomus spp, as a means of managing Fusarium wilt on young ‘Lakatan’ banana seedlings. Results showed that Glomus applied basally significantly improved banana seedling growth with increased increment in plant height and pseudostem diameter and heavier root weight. The application of Glomus spp. alone offered 100% protection to the ‘Lakatan’ seedlings against FocR4 as indicated by the absence of the wilting symptom. A combination of T. harzianum and Glomus spp. also gave significant effect against Fusarium wilt through delayed disease progression in the seedlings but was not synergistic. Competitive effects were suspected when application of the two biological control agents on banana roots was done simultaneously.


Plant Disease ◽  
2020 ◽  
Author(s):  
Josue Diaz ◽  
Jorge Garcia ◽  
Celeste Lara ◽  
Robert B. Hutmacher ◽  
Mauricio Ulloa ◽  
...  

Fusarium oxysporum f. sp. vasinfectum (FOV) race 4, is a causal agent of Fusarium wilt of cotton (Gossypium spp.). This study aimed to characterize the existing distribution and frequency of current field populations of FOV race 4 genotypes in the San Joaquin Valley (SJV) of California and Lower Valley El Paso, Texas and examine representative isolates for aggressiveness during different stages of seedling development. A survey was conducted from 2017 to 2019 across 13 locations in the SJV and one location in El Paso, Texas during 2018. From the SJV, isolates identified as the FOV race 4 T genotype were dispersed across the SJV, while isolates identified as the FOV race 4 N genotype were most frequently isolated from cotton fields in the northern county of Merced. The FOV race 4 isolates from the Texas location were identified as the MT genotype. A selection of representative isolates was evaluated using three inoculation assays, a rolled towel, FOV infested-oat seed, and a root dip inoculation assay to test the isolates’ abilities to produce symptoms during seedling stages of cotton development. All isolates tested were capable of producing symptoms on cotton, however isolate aggressiveness varied within and across inoculation assays. In all assays, higher levels of disease development were observed in the moderately susceptible Pima (G. barbadense L.) cultivars (DP-340 or PYH-830) when compared to the moderately tolerant Upland (G. hirsutum L.) cultivar (FM-2334). However, no correlation was found among the different response variables for the rolled towel assay when compared with the root dip and infested-oat seed assays. These results suggest that different genes are involved in the resistance response during the early seedling development stage measured in the rolled towel assay compared to the later seedling development stages measured during the root dip inoculation and infested-oat seed assays, revealing the complexity of the Fusarium wilt disease and host-plant resistance mechanisms.


Sign in / Sign up

Export Citation Format

Share Document