panama disease
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 33)

H-INDEX

18
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Minhui Li ◽  
Lifei Xie ◽  
Meng Wang ◽  
Yilian Lin ◽  
Yong Zhang ◽  
...  

AbstractMicroRNAs (miRNAs) are small non-coding RNAs that regulate protein-coding gene expression primarily found in plants and animals. Fungi produce microRNA-like RNAs (milRNAs) that are structurally similar to miRNAs and functionally important in various biological processes. The fungus Fusarium oxysporum f. sp. cubense (Foc) is the causal agent of Panama disease that threatens global banana production. It remains uncharacterized about the biosynthesis and functions of milRNAs in Foc. In this study, we investigated the biological function of milRNAs contributing to Foc pathogenesis. Within 24 hours post infecting the host, the Argonaute coding gene FoQDE2, and two Dicer coding genes FoDCL1 and FoDCL2, all of which are involved in milRNA biosynthesis, were significantly induced. FoQDE2 deletion mutant exhibited decreased virulence and hypersensitivity to hydrogen peroxide (H2O2). These results indicate that milRNA biosynthesis is crucial for Foc pathogenesis. By small RNA sequencing, we identified 364 small RNA-producing loci in the Foc genome, 25 of which were significantly downregulated in the FoQDE2 deletion mutant, from which milR-87 was verified as a FoQDE2-depedent milRNA based on qRT-PCR analysis. Through deletion and overexpression of milR-87 in the wild-type Foc strain, functions of milR-87 were studied. The results showed that milR-87 is crucial for Foc virulence in infection process. We furthermore identified a glycosyl hydrolase-coding gene, FOIG_15013, as the direct target of milR-87. The FOIG_15013 deletion mutant displayed a dramatic increase in the growth, conidiation and virulence. Transient expression of FOIG_15013 in Nicotiana benthamiana leaves activates the host defense responses. Collectively, this study documents the involvement of milRNAs in the manifestation of the devastating fungal disease in banana, and demonstrates the importance of milRNAs in the pathogenesis and other biological processes. Further analyses of the biosynthesis and expression regulation of fungal milRNAs may offer a novel strategy to combat devastating fungal diseases.Author summaryThe fungus Fusarium oxysporum f. sp. cubense (Foc) is the causal agent of Panama disease that threatens global banana production. As a typical representative of F. oxysporum species complex, the pathogen has been widely concerned. However, pathogenesis of Foc is not fully elucidated. In particular, pathogenic regulatory mechanism of the microRNA like small RNAs (milRNAs) found in Foc is unknown. Here, we found that FoQDE2, one Argonaute coding gene, and two Dicer coding genes FoDCL1 and FoDCL2, which are involved in milRNA biosynthesis, are significantly induced during the early infection stage of Foc. The results suggested that the milRNAs biosynthesis mediated by these genes may play an active role in the infection process of Foc. Based on this assumption, we subsequently found a FoQDE2-dependent milRNA (milR-87) and identified its target gene. Functional analysis showed that FoQDE2, miR-87 and its target gene were involved in the pathogenicity of Foc in different degree. The studies help us gain insight into the pathogenesis with FoQDE2, milR-87, and its target gene as central axis in Foc. The identified pathogenicity-involved milRNA provides an active target for developing novel and efficient biocontrol agents against Panama disease.


Marine Drugs ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. 516
Author(s):  
Pratiksha Singh ◽  
Jin Xie ◽  
Yanhua Qi ◽  
Qijian Qin ◽  
Cheng Jin ◽  
...  

Fusarium wilt of banana (also known as Panama disease), is a severe fungal disease caused by soil-borne Fusarium oxysporum f. sp. cubense (Foc). In recent years, biocontrol strategies using antifungal microorganisms from various niches and their related bioactive compounds have been used to prevent and control Panama disease. Here, a thermotolerant marine strain S185 was identified as Bacillus amyloliquefaciens, displaying strong antifungal activity against Foc. The strain S185 possesses multiple plant growth-promoting (PGP) and biocontrol utility properties, such as producing indole acetic acid (IAA) and ammonia, assimilating various carbon sources, tolerating pH of 4 to 9, temperature of 20 to 50 °C, and salt stress of 1 to 5%. Inoculation of S185 colonized the banana plants effectively and was mainly located in leaf and root tissues. To further investigate the antifungal components, compounds were extracted, fractionated, and purified. One compound, inhibiting Foc with minimum inhibitory concentrations (MICs) of 25 μg/disk, was identified as iturin A5 by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and nuclear magnetic resonance (NMR). The isolated iturin, A5, resulted in severe morphological changes during spore germination and hyphae growth of Foc. These results specify that B. amyloliquefaciens S185 plays a key role in preventing the Foc pathogen by producing the antifungal compound iturin A5, and possesses potential as a cost-effective and sustainable biocontrol strain for Panama disease in the future. This is the first report of isolation of the antifungal compound iturin A5 from thermotolerant marine B. amyloliquefaciens S185.


2021 ◽  
Vol 7 (8) ◽  
pp. 627
Author(s):  
Sharl J. L. Mintoff ◽  
Tuan V. Nguyen ◽  
Chris Kelly ◽  
Samantha Cullen ◽  
Mark Hearnden ◽  
...  

Fusarium oxysporum f.sp. cubense, causal agent of Panama disease, is one of the biggest threats to global banana production, particularly the Cavendish competent tropical race 4 (Foc TR4). It continues to spread globally with detections occurring in regions of the Middle East and new continents such as Africa and South America in the last decade. As the search was on for new management strategies and resistant cultivars to combat the disease, a banana cultivar-screening trial took place in the Northern Territory of Australia, which examined the responses of 24 banana cultivars to the soil borne fungus. These cultivars included material from TBRI, FHIA and selections from Thailand, Indonesia and Australia and evaluated for their resistance to tropical race 4 for two cropping cycles. Several cultivars displayed considerable resistance to Foc TR4, including several FHIA parental lines and hybrids, the Cavendish (AAA) selections GCTCV 215 and GCTCV 247 from TBRI and an Indonesian selection CJ19 showed either very little to no plant death due to the disease.


Biotecnia ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 127-134
Author(s):  
Ana Claudia Sánchez-Espinosa ◽  
José Luis Villarruel-Ordaz ◽  
Luis David Maldonado Bonilla

Bananas are important crops in developing countries with tropical climate. In Mexico, the banana production has increased, and it must be guaranteed. The Panama disease, caused by the fungus Fusarium oxysporum f.sp. cubense threatens the current banana production, for what is necessary to implement methods to protect this crop. Fungi from genus Trichoderma are natural residents of the rhizosphere. This genus comprises mycoparasite species used to control diseases caused by phytopathogenic fungi, and also benefit plant development. In this report, we present data of the identification and characterization of the novel strain Trichoderma harzianum M110 that displays antagonism and biocontrol potential in laboratory conditions. Exploration of the rhizosphere and the endophytic microbial communities might help to identify microbes adapted to banana plants that can be incorporated in organic biological control formulations that ensure production of Fusarium-free plants and healthy fruits with export quality.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhenfang Li ◽  
Tong Wang ◽  
Chenling He ◽  
Kelin Cheng ◽  
Rensen Zeng ◽  
...  

Abstract Panama disease (Fusarium wilt disease) caused by Fusarium oxysporum f. sp. cubense race 4 (FOC) severely threatens banana (Musa spp.) production worldwide. Intercropping of banana with Allium plants has shown a potential to reduce Panama disease. In this study, six cultivars of Chinese chive (Allium tuberosum Rottler) were selected to compare their differences in antifungal activity and active compounds. Three cultivars Duokang Fujiu 11, Fujiuhuang 2, and Duokang Sijiqing with higher levels of antifungal compounds were further used for intercropping with banana in the pots and field to compare their effects on growth and disease incidence of banana. The six cultivars showed significant differences in antifungal activity against FOC mycelia growth in both leaf volatiles and aqueous leachates. The aqueous leachates displayed stronger antifungal activity than the volatiles. FJH cultivar showed the best inhibitory effect among all six cultivars. Contents of three main antifungal compounds dipropyl trisulfide (DPT), dimethyl trisulfide (DMT), and 2-methyl-2-pentenal (MP) in volatiles and aqueous leachates varied considerably among cultivars. Pot and field experiments showed that intercropping with three selected Chinese chive cultivars significantly improved banana vegetative growth, increased photosynthetic characteristics and yield but decreased disease incidence of Panama disease. Our results indicate that intercropping with Chinese chive shows potential to reduce banana Panama disease and selection of appropriate cultivars is vital for effective disease control.


2020 ◽  
Author(s):  
Zhen-Fang Li ◽  
Tong Wang ◽  
Chenling He ◽  
Kelin Cheng ◽  
Rensen Zeng ◽  
...  

Abstract Panama disease (Fusarium wilt disease) caused by Fusarium oxysporum f. sp. cubense race 4 (FOC) severely threatens banana (Musa spp.) production worldwide. Intercropping of banana with Allium plants has shown a potential to reduce Panama disease. In this study, six cultivars of Chinese chive ( Allium tuberosum Rottler) were selected to compare their differences in antifungal activity and active compounds. Three cultivars Duokang Fujiu 11, Fujiuhuang 2, and Duokang Sijiqing with higher levels of antifungal compounds were further used for intercropping with banana in the pots and field to compare their effects on growth and disease incidence of banana. The six cultivars showed significant differences in antifungal activity against FOC mycelia growth in both leaf volatiles and aqueous leachates. The aqueous leachates displayed stronger antifungal activity than the volatiles. FJH cultivar showed the best inhibitory effect among all six cultivars. Contents of three main antifungal compounds dipropyl trisulfide (DPT), dimethyl trisulfide (DMT), and 2-methyl-2-pentenal (MP) in volatiles and aqueous leachates varied considerably among cultivars. Pot and field experiments showed that intercropping with three selected Chinese chive cultivars significantly improved banana vegetative growth, increased photosynthetic characteristics and yield but decreased disease incidence of Panama disease. Our results indicate that intercropping with Chinese chive shows potential to reduce banana Panama disease and selection of appropriate cultivars is vital for effective disease control.


2020 ◽  
Author(s):  
Zhen-Fang Li ◽  
Tong Wang ◽  
Chenling He ◽  
Kelin Cheng ◽  
Rensen Zeng ◽  
...  

Abstract Panama disease (Fusarium wilt disease) caused by Fusarium oxysporum f. sp. cubense race 4 (FOC) severely threatens banana (Musa spp.) production worldwide. Intercropping of banana with Allium plants has shown a potential to reduce Panama disease. In this study, six cultivars of Chinese chive (Allium tuberosum Rottler) were selected to compare their differences in antifungal activity and active compounds. Three cultivars Duokang Fujiu 11, Fujiuhuang 2, and Duokang Sijiqing with higher levels of antifungal compounds were further used for intercropping with banana in the pots and field to compare their effects on growth and disease incidence of banana. The six cultivars showed significant differences in antifungal activity against FOC mycelia growth in both leaf volatiles and aqueous leachates. The aqueous leachates displayed stronger antifungal activity than the volatiles. FJH cultivar showed the best inhibitory effect among all six cultivars. Contents of three main antifungal compounds dipropyl trisulfide (DPT), dimethyl trisulfide (DMT), and 2-methyl-2-pentenal (MP) in volatiles and aqueous leachates varied considerably among cultivars. Pot and field experiments showed that intercropping with three selected Chinese chive cultivars significantly improved banana vegetative growth, increased photosynthetic characteristics and yield but decreased disease incidence of Panama disease.Our results indicate that intercropping with Chinese chive shows potential to reduce banana Panama disease and selection of appropriate cultivars is vital for effective disease control.


2020 ◽  
Author(s):  
Zhen-Fang Li ◽  
Tong Wang ◽  
Chenlin He ◽  
Kelin Cheng ◽  
Rensen Zeng ◽  
...  

Abstract Panama disease (Fusarium wilt disease) caused by Fusarium oxysporum f. sp. cubense race 4 (FOC) severely threatens banana (Musa spp.) production worldwide. Intercropping of banana with Allium plants has shown a potential to reduce Panama disease. In this study, six cultivars of Chinese chive ( Allium tuberosum Rottler) were selected to compare their differences in antifungal activity and active compounds. Three cultivars Duokang Fujiu 11, Fujiuhuang 2, and Duokang Sijiqing with higher levels of antifungal compounds were further used for intercropping with banana in the pots and field to compare their effects on growth and disease incidence of banana. The six cultivars showed significant differences in antifungal activity against FOC mycelia growth in both leaf volatiles and aqueous leachates. The aqueous leachates displayed stronger antifungal activity than the volatiles. FJH cultivar showed the best inhibitory effect among all six cultivars. Contents of three main antifungal compounds dipropyl trisulfide (DPT), dimethyl trisulfide (DMT), and 2-methyl-2-pentenal (MP) in volatiles and aqueous leachates varied considerably among cultivars. Pot and field experiments showed that intercropping with three selected Chinese chive cultivars significantly improved banana vegetative growth, increased photosynthetic characteristics and yield but decreased disease incidence of Panama disease. Our results indicate that intercropping with Chinese chive shows potential to reduce banana Panama disease and selection of appropriate cultivars is vital for effective disease control.


2020 ◽  
Author(s):  
Zhen-Fang Li ◽  
Tong Wang ◽  
Chenlin He ◽  
Kelin Cheng ◽  
Rensen Zeng ◽  
...  

Abstract BackgroundPanama disease (Fusarium wilt disease) caused by Fusarium oxysporum f. sp. cubense race 4 (FOC) severely threatens banana (Musa spp.) production worldwide. Intercropping of banana with Allium plants has shown a potential to reduce Panama disease. In this study six cultivars of Chinese chive (Allium tuberosum Rottler) were selected to compare their differences in antifungal activity and active compounds. Three cultivars Duokang Fujiu 11, Fujiuhuang 2, and Duokang Sijiqing with higher levels of antifungal compounds were further used for intercropping with banana in the pots and field to compare their effects on growth and disease incidence of banana.Methods and ResultsThe six cultivars showed significant differences in antifungal activity against FOC mycelia growth in both leaf volatiles and aqueous leachates. The aqueous leachates displayed stronger antifungal activity than the volatiles. FJH cultivar showed the best inhibitory effect among all six cultivars. Contents of three main antifungal compounds dipropyl trisulfide (DPT), dimethyl trisulfide (DMT), and 2-methyl-2-pentenal (MP) in volatiles and aqueous leachates varied considerably among cultivars. Pot and field experiments showed that intercropping with three selected Chinese chive cultivars significantly improved banana vegetative growth, increased photosynthetic characteristics and yield but decreased disease incidence of Panama disease.ConclusionsOur results indicate that intercropping with Chinese chive shows potential to reduce banana Panama disease and selection of appropriate cultivars is vital for effective disease control.


Sign in / Sign up

Export Citation Format

Share Document