scholarly journals Biological, Pathological, and Molecular Characteristics of a New Potyvirus, Dendrobium Chlorotic Mosaic Virus, Infecting Dendrobium Orchid

Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1605-1612 ◽  
Author(s):  
Chih-Hung Huang ◽  
Chia-Hsing Tai ◽  
Ruey-Song Lin ◽  
Chung-Jan Chang ◽  
Fuh-Jyh Jan

Dendrobium smillieae is one of the popular orchids in Taiwan. This report describes a new potyvirus tentatively named Dendrobium chlorotic mosaic virus (DeCMV) causing chlorotic and mosaic symptoms in D. smillieae. Enzyme-linked immunosorbent assay (ELISA) tests using six antisera against orchid-infecting viruses revealed that only a monoclonal antibody against the potyvirus group reacted positively with crude saps prepared from a symptomatic dendrobium orchid. Potyvirus-like, flexuous, filamentous particles were observed under an electron microscope, measuring approximately 700 to 800 nm in length and 11 to 12 nm in diameter. Sequence analyses revealed that DeCMV coat protein gene shared 59.6 to 66.0% nucleotide sequence identity and 57.6 to 66.0% amino acid sequence identity, whereas the DeCMV complete genome shared 54.1 to 57.3% nucleotide sequence identity and 43.7 to 49.5% amino acid sequence identity with those other known potyviruses. These similarity levels were much lower than the criteria set for species demarcation in potyviruses. Thus, DeCMV can be considered a new potyvirus. The whole DeCMV genome contains 10,041 nucleotides (GenBank accession no. MK241979) and encodes a polyprotein that is predicted to produce 10 proteins by proteolytic cleavage. In a pathogenicity test, results of inoculation assays demonstrated that DeCMV can be transmitted to dendrobium orchids by grafting and mechanical inoculation, as verified by ELISA and western blot analyses using the DeCMV polyclonal antiserum and by reverse transcription polymerase chain reaction using the coat protein gene-specific primers. The inoculated orchids developed similar chlorotic and mosaic symptoms. In conclusion, DeCMV is a novel orchid-infecting potyvirus, and this is the first report of a new potyvirus that infects dendrobium orchids in Taiwan.

2008 ◽  
Vol 34 (2) ◽  
pp. 175-177 ◽  
Author(s):  
Márcio Martinello Sanches ◽  
Renate Krause-Sakate ◽  
Marcelo Agenor Pavan

Lettuce big vein associated virus (LBVaV) and Mirafiori lettuce big vein virus (MLBVV) have been found in mixed infection in Brazil causing the lettuce big vein disease. Analysis of part of the coat protein (CP) gene of Brazilian isolates of LBVaV collected from lettuce, showed at least 93% amino acid sequence identity with other LBVaV isolates. Genetic diversity among MLBVV CP sequences was higher when compared to LBVaV CP sequences, with amino acid sequence identity ranging between 91% to 100%. Brazilian isolates of MLBVV belong to subgroup A, with one RsaI restriction site on the coat protein gene. There is no indication for a possible geografical origin for the Brazilian isolates of LBVaV and MLBVV.


Zygote ◽  
2002 ◽  
Vol 10 (4) ◽  
pp. 291-299 ◽  
Author(s):  
Christine A. Swann ◽  
Rory M. Hope ◽  
William G. Breed

This comparative study of the cDNA sequence of the zona pellucida C (ZPC) glycoprotein in murid rodents focuses on the nucleotide and amino acid sequence of the putative sperm-combining site. We ask the question: Has divergence evolved in the nucleotide sequence of ZPC in the murid rodents of Australia? Using RT-PCR and (RACE) PCR, the complete cDNA coding region of ZPC in the Australian hydromyine rodents Notomys alexis and Pseudomys australis, and a partial cDNA sequence from a third hydromyine rodent, Hydromys chrysogaster, has been determined. Comparison between the cDNA sequences of the hydromyine rodents reveals that the level of amino acid sequence identity between N. alexis and P. australis is 96%, whereas that between the two species of hydromyine rodents and M. musculus and R. norvegicus is 88% and 87% respectively. Despite being reproductively isolated from each other, the three species of hydromyine rodents have a 100% level of amino acid sequence identity at the putative sperm-combining site. This finding does not support the view that this site is under positive selective pressure. The sequence data obtained in this study may have important conservation implications for the dissemination of immunocontraception directed against M. musculus using ZPC antibodies.


1990 ◽  
Vol 18 (23) ◽  
pp. 7166-7166 ◽  
Author(s):  
Robin M. Eagles ◽  
Richard C. Gardner ◽  
Richard L.S. Forster

1990 ◽  
Vol 18 (18) ◽  
pp. 5555-5555 ◽  
Author(s):  
Ling-Jie Kong ◽  
Rong-Xiang Fang ◽  
Zheng-Hua Chen ◽  
Ke-Qiang Mang

2001 ◽  
Vol 183 (19) ◽  
pp. 5684-5697 ◽  
Author(s):  
Betsy Martinez ◽  
Jeffrey Tomkins ◽  
Lawrence P. Wackett ◽  
Rod Wing ◽  
Michael J. Sadowsky

ABSTRACT The complete 108,845-nucleotide sequence of catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP was determined. Plasmid pADP-1 was previously shown to encode AtzA, AtzB, and AtzC, which catalyze the sequential hydrolytic removal ofs-triazine ring substituents from the herbicide atrazine to yield cyanuric acid. Computational analyses indicated that pADP-1 encodes 104 putative open reading frames (ORFs), which are predicted to function in catabolism, transposition, and plasmid maintenance, transfer, and replication. Regions encoding transfer and replication functions of pADP-1 had 80 to 100% amino acid sequence identity to pR751, an IncPβ plasmid previously isolated from Enterobacter aerogenes. pADP-1 was shown to contain a functional mercury resistance operon with 99% identity to Tn5053. Complete copies of transposases with 99% amino acid sequence identity to TnpA from IS1071 and TnpA from Pseudomonas pseudoalcaligenes were identified and flank each of theatzA, atzB, and atzC genes, forming structures resembling nested catabolic transposons. Functional analyses identified three new catabolic genes, atzD,atzE, and atzF, which participate in atrazine catabolism. Crude extracts from Escherichia coli expressing AtzD hydrolyzed cyanuric acid to biuret. AtzD showed 58% amino acid sequence identity to TrzD, a cyanuric acid amidohydrolase, from Pseudomonas sp. strain NRRLB-12227. Two other genes encoding the further catabolism of cyanuric acid, atzE and atzF, reside in a contiguous cluster adjacent to a potential LysR-type transcriptional regulator. E. coli strains bearing atzEand atzF were shown to encode a biuret hydrolase and allophanate hydrolase, respectively. atzDEF are cotranscribed. AtzE and AtzF are members of a common amidase protein family. These data reveal the complete structure of a catabolic plasmid and show that the atrazine catabolic genes are dispersed on three disparate regions of the plasmid. These results begin to provide insight into how plasmids are structured, and thus evolve, to encode the catabolism of compounds recently added to the biosphere.


Sign in / Sign up

Export Citation Format

Share Document