scholarly journals cDNA nucleotide sequence encoding the ZPC protein of Australian hydromyine rodents: a novel sequence of the putative sperm-combining site within the family Muridae

Zygote ◽  
2002 ◽  
Vol 10 (4) ◽  
pp. 291-299 ◽  
Author(s):  
Christine A. Swann ◽  
Rory M. Hope ◽  
William G. Breed

This comparative study of the cDNA sequence of the zona pellucida C (ZPC) glycoprotein in murid rodents focuses on the nucleotide and amino acid sequence of the putative sperm-combining site. We ask the question: Has divergence evolved in the nucleotide sequence of ZPC in the murid rodents of Australia? Using RT-PCR and (RACE) PCR, the complete cDNA coding region of ZPC in the Australian hydromyine rodents Notomys alexis and Pseudomys australis, and a partial cDNA sequence from a third hydromyine rodent, Hydromys chrysogaster, has been determined. Comparison between the cDNA sequences of the hydromyine rodents reveals that the level of amino acid sequence identity between N. alexis and P. australis is 96%, whereas that between the two species of hydromyine rodents and M. musculus and R. norvegicus is 88% and 87% respectively. Despite being reproductively isolated from each other, the three species of hydromyine rodents have a 100% level of amino acid sequence identity at the putative sperm-combining site. This finding does not support the view that this site is under positive selective pressure. The sequence data obtained in this study may have important conservation implications for the dissemination of immunocontraception directed against M. musculus using ZPC antibodies.

Blood ◽  
1988 ◽  
Vol 72 (2) ◽  
pp. 593-600 ◽  
Author(s):  
JP Rosa ◽  
PF Bray ◽  
O Gayet ◽  
GI Johnston ◽  
RG Cook ◽  
...  

Abstract Platelet aggregation requires the binding of adhesive proteins such as fibrinogen to the heterodimer of membrane glycoproteins IIb (GPIIb) and IIIa (GPIIIa). Human erythroleukemia (HEL) cells synthesize both GPIIb and GPIIIa. Using poly(A+) RNA purified from HEL cells, we constructed a cDNA library in the lambda gt10 phage vector. This library was screened with a 38mer oligonucleotide derived from a platelet GPIIIa peptide, and three overlapping cDNAs were isolated. The three inserts encompassed 3.5 kilobases (kb), including the entire coding region of mature GPIIIa (2,286 basepairs, bp) and 1.3 kb of 3′ untranslated sequence. All 222 residues determined directly from platelet GPIIIa tryptic peptides exactly matched the HEL cell-deduced amino acid sequence. The HEL cell sequence matched a previously reported endothelial cell cDNA sequence except for eight nucleotides. Five of these nucleotide differences were silent changes consistent with genetic polymorphisms. The other three differences resulted in changes in the deduced amino acid sequence of GPIIIa; reexamination of the endothelial cell cDNA sequence in these three areas revealed that it is actually identical to the HEL cell sequence. The virtual identity of the endothelial and HEL cell cDNA sequences provides direct evidence that GPIIIa is a subunit common to cell-adhesion receptors present in more than one cell type. We localized the gene for GPIIIa to chromosome 17, the same chromosome to which we had previously mapped the gene for GPIIb.


Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1605-1612 ◽  
Author(s):  
Chih-Hung Huang ◽  
Chia-Hsing Tai ◽  
Ruey-Song Lin ◽  
Chung-Jan Chang ◽  
Fuh-Jyh Jan

Dendrobium smillieae is one of the popular orchids in Taiwan. This report describes a new potyvirus tentatively named Dendrobium chlorotic mosaic virus (DeCMV) causing chlorotic and mosaic symptoms in D. smillieae. Enzyme-linked immunosorbent assay (ELISA) tests using six antisera against orchid-infecting viruses revealed that only a monoclonal antibody against the potyvirus group reacted positively with crude saps prepared from a symptomatic dendrobium orchid. Potyvirus-like, flexuous, filamentous particles were observed under an electron microscope, measuring approximately 700 to 800 nm in length and 11 to 12 nm in diameter. Sequence analyses revealed that DeCMV coat protein gene shared 59.6 to 66.0% nucleotide sequence identity and 57.6 to 66.0% amino acid sequence identity, whereas the DeCMV complete genome shared 54.1 to 57.3% nucleotide sequence identity and 43.7 to 49.5% amino acid sequence identity with those other known potyviruses. These similarity levels were much lower than the criteria set for species demarcation in potyviruses. Thus, DeCMV can be considered a new potyvirus. The whole DeCMV genome contains 10,041 nucleotides (GenBank accession no. MK241979) and encodes a polyprotein that is predicted to produce 10 proteins by proteolytic cleavage. In a pathogenicity test, results of inoculation assays demonstrated that DeCMV can be transmitted to dendrobium orchids by grafting and mechanical inoculation, as verified by ELISA and western blot analyses using the DeCMV polyclonal antiserum and by reverse transcription polymerase chain reaction using the coat protein gene-specific primers. The inoculated orchids developed similar chlorotic and mosaic symptoms. In conclusion, DeCMV is a novel orchid-infecting potyvirus, and this is the first report of a new potyvirus that infects dendrobium orchids in Taiwan.


2001 ◽  
Vol 183 (19) ◽  
pp. 5684-5697 ◽  
Author(s):  
Betsy Martinez ◽  
Jeffrey Tomkins ◽  
Lawrence P. Wackett ◽  
Rod Wing ◽  
Michael J. Sadowsky

ABSTRACT The complete 108,845-nucleotide sequence of catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP was determined. Plasmid pADP-1 was previously shown to encode AtzA, AtzB, and AtzC, which catalyze the sequential hydrolytic removal ofs-triazine ring substituents from the herbicide atrazine to yield cyanuric acid. Computational analyses indicated that pADP-1 encodes 104 putative open reading frames (ORFs), which are predicted to function in catabolism, transposition, and plasmid maintenance, transfer, and replication. Regions encoding transfer and replication functions of pADP-1 had 80 to 100% amino acid sequence identity to pR751, an IncPβ plasmid previously isolated from Enterobacter aerogenes. pADP-1 was shown to contain a functional mercury resistance operon with 99% identity to Tn5053. Complete copies of transposases with 99% amino acid sequence identity to TnpA from IS1071 and TnpA from Pseudomonas pseudoalcaligenes were identified and flank each of theatzA, atzB, and atzC genes, forming structures resembling nested catabolic transposons. Functional analyses identified three new catabolic genes, atzD,atzE, and atzF, which participate in atrazine catabolism. Crude extracts from Escherichia coli expressing AtzD hydrolyzed cyanuric acid to biuret. AtzD showed 58% amino acid sequence identity to TrzD, a cyanuric acid amidohydrolase, from Pseudomonas sp. strain NRRLB-12227. Two other genes encoding the further catabolism of cyanuric acid, atzE and atzF, reside in a contiguous cluster adjacent to a potential LysR-type transcriptional regulator. E. coli strains bearing atzEand atzF were shown to encode a biuret hydrolase and allophanate hydrolase, respectively. atzDEF are cotranscribed. AtzE and AtzF are members of a common amidase protein family. These data reveal the complete structure of a catabolic plasmid and show that the atrazine catabolic genes are dispersed on three disparate regions of the plasmid. These results begin to provide insight into how plasmids are structured, and thus evolve, to encode the catabolism of compounds recently added to the biosphere.


1992 ◽  
Vol 287 (3) ◽  
pp. 957-963 ◽  
Author(s):  
S E Pemble ◽  
J B Taylor

We report the cDNA sequence for rat glutathione transferase (GST) subunit 5, which is one of at least three class Theta subunits in this species. This sequence, when compared with that of subunit 12 recently published by Ogura, Nishiyama, Okada, Kajita, Narihata, Watabe, Hiratsuka & Watabe [(1991) Biochem. Biophys. Res. Commun. 181, 1294-1300] proves that Theta is a separate multigene class of GST with little amino acid sequence identity with Mu-, Alpha- or Pi-class enzymes. The amino acid sequence identity of class-Theta subunits is highly conserved in rat, the fruitfly Drosophila, maize (Zea mays) and Methylobacterium, which suggests that this family is representative of the ancient progenitor GST gene and originates from the endosymbioses of a purple bacterium leading to the mitochondrion. The high conservation of class Theta brings into prominence that Alpha-, Mu- and Pi-class enzymes, which are not present in plants, derive from a Theta-class gene duplication before the divergence of fungi and animals and, given the binding properties of the Alpha-, Mu- and Pi-classes, suggests a role for these in the evolution of fungi and animals.


Blood ◽  
1988 ◽  
Vol 72 (2) ◽  
pp. 593-600 ◽  
Author(s):  
JP Rosa ◽  
PF Bray ◽  
O Gayet ◽  
GI Johnston ◽  
RG Cook ◽  
...  

Platelet aggregation requires the binding of adhesive proteins such as fibrinogen to the heterodimer of membrane glycoproteins IIb (GPIIb) and IIIa (GPIIIa). Human erythroleukemia (HEL) cells synthesize both GPIIb and GPIIIa. Using poly(A+) RNA purified from HEL cells, we constructed a cDNA library in the lambda gt10 phage vector. This library was screened with a 38mer oligonucleotide derived from a platelet GPIIIa peptide, and three overlapping cDNAs were isolated. The three inserts encompassed 3.5 kilobases (kb), including the entire coding region of mature GPIIIa (2,286 basepairs, bp) and 1.3 kb of 3′ untranslated sequence. All 222 residues determined directly from platelet GPIIIa tryptic peptides exactly matched the HEL cell-deduced amino acid sequence. The HEL cell sequence matched a previously reported endothelial cell cDNA sequence except for eight nucleotides. Five of these nucleotide differences were silent changes consistent with genetic polymorphisms. The other three differences resulted in changes in the deduced amino acid sequence of GPIIIa; reexamination of the endothelial cell cDNA sequence in these three areas revealed that it is actually identical to the HEL cell sequence. The virtual identity of the endothelial and HEL cell cDNA sequences provides direct evidence that GPIIIa is a subunit common to cell-adhesion receptors present in more than one cell type. We localized the gene for GPIIIa to chromosome 17, the same chromosome to which we had previously mapped the gene for GPIIb.


2001 ◽  
Vol 45 (2) ◽  
pp. 616-620 ◽  
Author(s):  
Antonio Oliver ◽  
José Claudio Pérez-Dı́az ◽  
Teresa M. Coque ◽  
Fernando Baquero ◽  
Rafael Cantón

ABSTRACT A cefotaxime-resistant, ceftazidime-susceptible Escherichia coli isolate was obtained from a patient with sepsis in 1997, from which a β-lactamase with a pI of 8.1 was cloned. Cephaloridine and cefotaxime relative hydrolysis rates were 167 and 81, respectively (penicillin G rate = 100), whereas ceftazidime hydrolysis was not detected. The nucleotide sequence revealed a bla gene related to that coding for CTX-M-3. Despite 21 nucleotide substitutions, only 2 determined amino acid changes (Ala27Val and Arg38Gln). The amino acid sequence identity between this enzyme, designated CTX-M-10, and the chromosomal β-lactamase ofKluyvera ascorbata was 81%.


1986 ◽  
Vol 235 (3) ◽  
pp. 895-898 ◽  
Author(s):  
M S López de Haro ◽  
A Nieto

An almost full-length cDNA coding for pre-uteroglobin from hare lung was cloned and sequenced. The derived amino acid sequence indicated that hare pre-uteroglobin contained 91 amino acids, including a signal peptide of 21 residues. Comparison of the nucleotide sequence of hare pre-uteroglobin cDNA with that previously reported for the rabbit gene indicated five silent point substitutions and six others leading to amino acid changes in the coding region. The untranslated regions of both pre-uteroglobin mRNAs were very similar. The amino acid changes observed are discussed in relation to the different progesterone-binding abilities of both homologous proteins.


1999 ◽  
Vol 26 (5) ◽  
pp. 495 ◽  
Author(s):  
Kazumasa Yoshida ◽  
Kiyoshi Tazaki

Three genomic clones (Rplec2, Rplec5 and Rplec6) and a cDNA clone (LECRPA4) that encoded lectin or lectin-related polypeptides were isolated from Robinia pseudoacacia L. A comparison of the nucleotide sequences of Rplec2 and a previously reported cDNA for the subunit indicated that Rplec2 encoded the 29 kDa subunit of the inner-bark lectin RPbAI. Rplec5 encoded a polypeptide whose deduced amino acid sequence was 96.1% identical to that of a subunit of seed lectin. The amino acid sequence deduced from the open reading frame of Rplec6 showed 61.1% identity to that encoded by Rplec5. LECRPA4 was isolated from an inner bark cDNA library and appeared to encode the 26 kDa subunit of inner-bark lectin RPbAII. The expression patterns of the various genes in tissues were examined by the reverse transcriptase-polymerase chain reaction (RT-PCR) with appropriate primers. Rplec2 transcripts were detected in the inner bark and roots. Rplec5 transcripts were detected in the inner bark, seeds and roots. No Rplec6 transcripts were detected in all tissues examined. LECRPA4 transcripts were found in leaves and in the inner bark. The level of expression of Rplec2 in the inner bark appeared to be similar in samples collected in different years and from different trees, whereas levels of expression of Rplec5 and LECRPA4 varied. These results suggest the differential regulation of expression of members of the lectin gene family in tissues of R. pseudoacacia. The nucleotide sequence data reported herein will appear in the DDBJ, EMBL and GenBank Nucleotide Sequence Databases under the accession numbers AB 012632 (Rplec2), AB012633 (Rplec5), AB012634 (Rplec6) and AB012635 (LECRPA4).


Sign in / Sign up

Export Citation Format

Share Document