scholarly journals First Report of Banana bunchy top virus in Banana (Musa spp.) from South Africa

Plant Disease ◽  
2016 ◽  
Vol 100 (6) ◽  
pp. 1251 ◽  
Author(s):  
A. E. C. Jooste ◽  
N. Wessels ◽  
M. van der Merwe
Plant Disease ◽  
2021 ◽  
Author(s):  
Yao Kolombia ◽  
Taiwo Oviasuyi ◽  
Kwasi Dzola AYISAH ◽  
Ayefouni Ale Gonh-Goh ◽  
Tagba Atsu ◽  
...  

Banana (including plantain; Musa spp.) is a vegetatively propagated semi-perennial crop in fields and backyard gardens in Togo. Banana bunchy top disease (BBTD), caused by banana bunchy top virus (BBTV, genus Babuvirus) is the most economically important viral disease, infection of which causes severe stunting and production losses of 90-100% within two seasons. The virus is spread by banana aphid, Pentalonia nigronervosa, and through vegetative propagation from infected sources. BBTV occurrence was first reported in West Africa in 2011 with confirmation in Republic of Benin and in Nigeria in 2012 . A regional alliance (www.bbtvalliance.org) has been established for BBTV surveillance through frequent surveys in countries neighboring those affected, such as Togo. The surveys conducted in September 2018 in banana growing areas in Togo revealed plants with typical symptoms (severe stunting, bunchy growth with shortened petioles with chlorotic streaks and yellow leaf margins) in three banana fields. Locations were Tsévié, Préfecture de Zio, (6.44°N, 1.21028°E), Lilicope, Préfecture de Zio in Maritime region (6.56583°N, 1.18639°E), and Amoutchou, Préfecture de l’Ogou in Plateaux region (7.3775°N, 1.17472°E). Leaf samples were collected from symptomatic (N=8) and asymptomatic plants (N=30) and used for DNA extraction followed by a polymerase chain reaction (PCR) for BBTV detection to amplify ~240 bp sequence of DNA-R encoding for core replicase gene. All samples from symptomatic plants (N=8) tested positive and asymptomatic plants were negative. To ascertain virus identity the 240-bp PCR product was purified and sequenced in both directions. A BLAST search of the sequence (NCBI GenBank Acc.# MK073116) revealed 99% identity with DNA-R sequences of BBTV isolates from Africa (e.g., JQ437549-Benin, JN290301-Nigeria). Further analysis of the 240-bp nucleotide sequence with Maximum-likelihood phylogenetic analysis using MEGA-X software has grouped the BBTV isolate with sub-Saharan African sub-clade of the South Pacific group. To further confirm the virus identity, two samples from symptomatic (PCR positive) and asymptomatic (PCR negative) plants from Tsévié were tested by TAS-ELISA using BBTV ELISA reagent set (Cat. No. SRA24700-1000, Agdia, France) following the manufacturers’ protocol. Only samples from two symptomatic plants that were positive in PCR reacted positively in TAS-ELISA; asymptomatic plants were negative. BBTV was not observed in any of the 22 locations surveyed as a follow-up in banana producing areas. To our knowledge, this is the first report of BBTV infecting banana in Togo. The plants detected in the three sites were eradicated in the follow-up action implemented by the alliance team together with the Direction de la Protection des Végétaux of Togo. Follow-up surveys were conducted in the same regions in 2019 and 2020 to ensure disease-free status in these sites and other banana producing regions in Togo. Efforts have been made to raise awareness about BBTD recognition, diagnosis, and eradication. To the best of our knowledge this is the first case of rapid detection and eradication of BBTD in sub-Saharan Africa. This study illustrates the importance of regular surveillance for early detection of invasive virus threats and the value of rapid eradication to contain viruses before spread and establishment in a new territory.


Plant Disease ◽  
2021 ◽  
Author(s):  
Shimwela Mpoki ◽  
George Mahuku ◽  
Deusdedith Rugaihukamu Mbanzibwa ◽  
Geoffrey Mkamilo ◽  
Deogratius Mark ◽  
...  

Banana (including plantain; Musa spp.) is an important vegetatively propagated food staple grown as a semi-perennial crop in fields and backyard gardens in Tanzania. Banana bunchy top disease (BBTD), caused by the banana bunchy top virus (BBTV, genus Babuvirus), is the most economically important viral disease of banana, infection of which results in severe stunting and reduction in fruit production by 90-100% within two seasons. The virus is spread by the banana aphid, Pentalonia nigronervosa, and through vegetative propagation of infected sources. BBTV is an introduced virus first reported in sub-Saharan Africa (SSA) in the 1960s in the Democratic Republic of Congo. Since then, BBTV spread was confirmed in 15 countries in Central, Southern, and Western African regions but was not detected in any previous surveys in the East African sub-region. During banana pests and disease surveys conducted in December 2020 – January 2021 in Buhigwe District in the Kigoma Region of Tanzania revealed banana plants with typical BBTV symptoms (severe stunting, leaves with shortened petioles, chlorotic streaks, and yellow leaf margins) in several banana fields in Muhinda (lon. 29.78662, lat. -4.53672) and Mwayaya (lon. 29.8218, lat. -4.49203) villages. Most of the affected plantations were 5 to 15 years old. Leaf samples (N=21) from symptomatic (N=6) and asymptomatic (N=15) banana plants were collected and used for total DNA extraction and BBTV detection by polymerase chain reaction (PCR) using the primer pair BBTV-1 and BBTV-2 to amplify ~240 bp sequence of DNA-R encoding for core master replication initiator protein gene. All samples from symptomatic plants tested positive and asymptomatic plants were negative. To further confirm the virus identity, four samples, each from symptomatic (PCR positive) and asymptomatic (PCR negative) plants from Muhinda and Mwayaya villages, were tested by Triple Antibody Sandwich-Enzyme-linked Immunosorbent Assay (TAS-ELISA) using BBTV ELISA reagent set (Cat. # SRA24700-1000, Agdia, France) following the manufacturer's protocol. Samples from symptomatic plants reacted positively in TAS-ELISA, and asymptomatic plants were negative. The 240-bp PCR product of two isolates was purified, and both strands were sequenced. A BLAST search of the nucleotide sequences (NCBI GenBank Acc.# MW711671 and MW711672) revealed 99% identity with DNA-R sequences of several other BBTV isolates from Africa (Acc. No# JF755994). Further analysis of the 240-bp nucleotide sequences with Maximum-likelihood phylogenetic analysis using MEGA-X software has grouped the two BBTV sequence isolates with the SSA sub-clade of the South-Pacific group. To our knowledge, this is the first report of BBTV infecting bananas in Tanzania, and East Africa endowed with rich banana diversity and popular East African Highland banana clone. BBTV presents a new threat to banana production in this sub-region due to the high risk of further spread through vegetative propagation, traditional planting material exchange practices, and the ubiquitous banana aphid vector. This study warrants delimitation surveys to assess the extent of spread, with simultaneous efforts to raise awareness about BBTD recognition and control measures among banana growers, including eradicating infected mats and replanting with healthy planting material to recover banana production.


Plant Disease ◽  
1997 ◽  
Vol 81 (5) ◽  
pp. 550-550 ◽  
Author(s):  
Hong-Ji Su ◽  
Ting-Hsuan Hung ◽  
Meng-Ling Wu

Banana (Musa sapientam L.) is an economically important crop for both export and local consumption in Taiwan. Recently, leaf symptoms characteristic of banana streak disease (1) were found on banana cv. Mysore (AAB group) introduced from Australia in the germ plasm collection of the Taiwan Banana Research Institute. The citrus mealybug (Planococus citri) has been shown to transmit banana streak virus (BSV) but not banana bunchy top virus or cucumber mosaic virus (CMV) (2). When mealybugs were fed on leaves of diseased Mysore banana and transferred to healthy banana cv. Cavendish seedlings in a growth chamber, the latter developed fine chlorotic streaks characteristic of symptoms caused by BSV within 1 to 3 months. Some chlorotic streaks became necrotic. BSV was detected in diseased but not healthy leaves of Mysore and Cavendish bananas by polymerase chain reaction (PCR) with primer pairs of BSV provided by J. E. Thomas of Queensland Department of Primary Industries. Subsequently, fine chlorotic streaks were observed in leaves of Cavendish banana in several fields in southern Taiwan. Some of these diseased plants developed severe leaf necrosis, causing heart rot of spindle leaves characteristic of symptoms caused by CMV. Presence of BSV in these plants was verified by PCR assay. However, CMV was also detected by double antibody sandwich-enzyme-linked immunosorbent assay with a monoclonal antibody to CMV, indicating that these plants were simultaneously infected by both viruses. This is the first report of BSV infecting Musa spp. in Taiwan. References: (1) B. E. L. Lockhart. Phytopathology 76:995, 1986. (2) B. E. L. Lockhart. 1995 Food & Fertilizer Technol. Center (ASPAC) Tech. Bull. 143. 11 pp.


2010 ◽  
pp. 233-238
Author(s):  
Z.C. De Beer ◽  
A. Sigawa
Keyword(s):  

2015 ◽  
Vol 30 (1) ◽  
pp. 34-35 ◽  
Author(s):  
Kwanele Gqunta ◽  
Johan van Wyk ◽  
Pieter Ekermans ◽  
Colleen Bamford ◽  
Clinton Moodley ◽  
...  
Keyword(s):  

Author(s):  
H. Heyne ◽  
E.A. Ueckermann ◽  
L. Coetzee

Leptotrombidium subquadratum larvae were collected for the first time in 1994 from dogs in Bloemfontein. The larvae have been collected annually, during the summer months, over a period of 6-7 years. Previously the only known hosts were scrub hare (Lepus saxatilis) (locality unknown) and short-snouted elephant shrew (Elephantulus brachyrhynchus) (Kruger National Park). These mites cause severe itching and dermatitis in humans and dogs.


Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1774 ◽  
Author(s):  
N. van den Berg ◽  
M. du Toit ◽  
S. W. Morgan ◽  
G. Fourie ◽  
Z. W. de Beer

Plant Disease ◽  
2010 ◽  
Vol 94 (4) ◽  
pp. 478-478 ◽  
Author(s):  
L. Mostert ◽  
W. Bester ◽  
T. Jensen ◽  
S. Coertze ◽  
A. van Hoorn ◽  
...  

Southern highbush blueberry plants (Vaccinium corymbosum interspecific hybrids) showing rust-like symptoms were observed in July 2006 in Porterville in the Western Cape (WC), South Africa. Diseased plants were also found in Villiersdorp and George in the WC in 2007. In 2008, symptoms were observed in George, and in 2009, in all the previous reported areas. Cvs. Bluecrisp, Emerald, Jewel, Sharpblue, and Star were infected. Reddish-to-brown spots appeared on the adaxial surface of leaves and developed into yellow-to-orange erumpent uredinia with pulverulent urediniospores. Uredinia were hypophyllous, dome shaped, 113 to 750 μm wide, and occasionally coalescing. Urediniospores were broadly obovate, sometimes ellipsoidal or pyriform, with yellowish orange content, and measured 19 to 27 × 12 to 20 μm (average 24 × 15 μm, n = 30). Spore walls were echinulate, hyaline, 1 to 1.5 μm thick, and with obscure germ pores. No telia or teliospores were observed. Voucher specimens were lodged in the South African National Fungus Collection in Pretoria (PREM 60245). The isolate was initially identified as Thekopsora minima P. Syd. & Syd., based primarily on the absence of conspicuous ostiolar cells characteristic of Naohidemyces spp. (3). Genomic DNA was extracted from urediniospores. Approximately 1,400 bp were amplified spanning the 5.8S, ITS2, and 28S large subunit of the ribosomal DNA (1). The sequence (GU355675) shared 96% (907 of 942 bp; GenBank AF522180) and 94% (1,014 of 1,047 bp; GenBank DQ354563) similarities in the 28S portion, respectively, to those of Naohidemyces vaccinii (Wint.) Sato, Katsuya et Y. Hiratsuka and Pucciniastrum geoppertianum (Kuehn) Kleb, two of the three known rust species of blueberry (2). Although no sequences of T. minima were available for direct comparison, phylogenetic analyses of the 28S region strongly supported the South African blueberry rust as congeneric with T. guttata (J. Schröt.) P. Syd. & Syd. (GenBank AF426231) and T. symphyti (Bubák) Berndt (GenBank AF26230) (data not shown). Four 6-month-old cv. Sharpblue plants were inoculated with a suspension (approximate final concentration of 1 × 105 spores per ml) of fresh urediniospores in a water solution with 0.05% Tween 20. After incubation at 20°C for 48 h under continuous fluorescent lighting, the plants were grown in a glasshouse (18/25°C night/day temperatures). Identical uredinia and symptoms developed approximately 3 weeks after inoculation on the inoculated plants, but not on two control plants of cv. Sharpblue sprayed with distilled water and kept at the same conditions. The alternate host hemlock (Tsuga spp.) is not endemic to South Africa and not sold as an ornamental plant according to a large conifer nursery. Hosts of T. minima include Gaylussacia baccata, G. frondosa, Lyonia neziki, Menziesia pilosa, Rhododendron canadense, R. canescens, R. lutescens R. ponticum, R. prunifolium, R. viscosum, V. angustifolium var. laevifolium, V. corumbosum, and V. erythrocarpon (3). Visual inspection of possible hosts in the gardens in close proximity of Vaccinium production areas did not show any rust symptoms. To our knowledge, this is the first report of T. minima on blueberries outside of Asia and the United States (2). References: (1) M. C. Aime. Mycoscience 47:112, 2006. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Botany and Mycology Laboratory. Online publication. USDA-ARS, 2009. (3) S. Sato et al. Trans. Mycol. Soc. Jpn. 34:47, 1993.


Sign in / Sign up

Export Citation Format

Share Document