leaf symptoms
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 23)

H-INDEX

17
(FIVE YEARS 2)

Plant Disease ◽  
2021 ◽  
Author(s):  
Jong-Won Park ◽  
John daGraca ◽  
Marissa Gonzalez ◽  
Eliezer S Louzada ◽  
Olufemi Joseph Alabi ◽  
...  

In 2018, Navarro et al. (2018a, b) identified two new negative sense coguviruses in citrus, citrus concave gum-associated virus (CCGaV) and citrus virus A (CiVA). Since then, the members of the genus Coguvirus have been also detected in other plant species (Xin et al. 2017; Wright et al. 2018; Svanella-Duma et al. 2019). In 2016, leaf flecking with oak leaf patterns were observed in five plants among embryo-rescued navel orange (NO) (Citrus sinensis (L.) Osbeck) trees grafted on C22 (C. sunki x Poncirus trifoliata) rootstock, maintained in a shade house. Madam Vinous (MV) sweet orange trees graft-inoculated with blind buds from the symptomatic NO plants developed the same symptoms in the new growth. These symptoms were similar to those on the citrus concave gum (CG) source tree of the California isolate CG301, one of the standard citrus disease isolates used as a positive control for biological indexing (Roistacher et al. 2000). None of the trees with oak leaf symptoms tested positive with reverse transcription (RT)-PCR for a panel of viruses and viroids commonly infecting citrus (Table S1) . In this study, CG301 leaf RNA-Seq data was used as a platform to identify any viral agent(s) associated with the oak leaf symptoms observed in the symptomatic NO trees (Fig. S1). Of ~162.8 million paired-end CG301 RNA-Seq reads (150 bp), de novo assembly of ~9.6 million reads, not mapped to C. sinensis genome (v.1.1), yielded 5,375 contigs. BLASTn using NCBI virus database (txid 10239) identified two contigs, #49 (6,715 nt) and #20 (2,764 nt), which exhibited ~96% sequence identity, respectively, to RNA1 and 2 of CiVA isolate W4 (MG764565; MG764566) and 71-73% identity to that of CCGaV isolate CGW2 (KX960112; KX960111). 5'-Nuclease assay developed based on contig #20 detected coguviral sequences in the five symptomatic NO and graft-inoculated MV trees as well as in CG301 but not in 44 asymptomatic field trees located near the shade house where the symptomatic NO trees had been kept. A full genomic sequence of the coguviruses present in CG301 and a symptomatic NO tree was reconstructed by RT-PCR. Both CG301 and NO isolate have a 6689 nt long negative sense RNA1 (MT922052; MK689372) encoding RNA-dependent RNA polymerase (RdRp) and a 2739 nt long ambisense RNA2 (MT922053; MK689373) encoding movement protein (MP) and nucleocapsid protein (NP). The isolate CG301 and NO share ~96% nucleotide sequence identity. The genome of both CG301 and NO isolate share 95.4-97.8 % sequence identity to that of CiVA isolate W4 and 70-72.9 % sequence identity to CCGaV isolate CGW2. BLASTp showed that RdRp of CG301 and NO isolate have 96.3-97.7 % sequence identity to CiVA W4 RdRp and ~77 % to CCGaV CGW2 RdRp. These data indicated the presence of CiVA in the symptomatic NO trees and in the concave gum source tree CG301. Recent reports of CiVA in South Africa and Greece indicated a potential wider distribution of CiVA in various citrus growing regions that may be associated with two graft-transmissible citrus diseases, citrus concave gum and impietratura disease (Roistacher et al. 2000; Velázquez et al. 2019; Beris et al. 2021; Bester et al. 2021). Although the source of CiVA in the symptomatic NO trees and the degree of CiVA prevalence in Texas had not been determined yet, a possible involvement of vector(s) or other means of spread (e.g. seed transmission) cannot be ruled out (Timmer et al. 2017). The current study demonstrated the need for further studies to determine the level of threat of coguviruses for citrus production in Texas.


Author(s):  
Wolfgang Schweigkofler ◽  
Tomas Pastalka ◽  
Nilwala Abeysekara ◽  
Vernon Huffman ◽  
Karen Suslow

Reliable data on the transmission of airborne plant pathogens are crucial for the development of epidemiological models and implementation of management strategies. The short-distance vertical transmission of the forest pathogen Phytophthora ramorum from a symptomatic California bay laurel (Umbellularia californica) to healthy containerized rhododendrons (Rhododendron caucasicum × R. ponticum var. album) was monitored for five winters (2016/17 to 2020/21) in a field experiment in Northern California. Transmission events were observed during four winters at a frequency of 1 to 17 per season, but not during the extremely dry winter of 2020/21, and were positively correlated to total rainfall rates. The first leaf symptoms were detected around mid-December and reached the highest numbers in January of most years. Only limited symptom development was observed in the spring, with the last detections in May. The exposure time (the time between the first rainfall after placing a bait plant under the bay laurel and development of symptoms) varied between 3 and over 150 days, with an average between 14 and 21 days. P. ramorum was detected from water samples collected from the canopy of the symptomatic California bay laurel. No horizontal pathogen spread was detected from symptomatic to healthy rhododendrons placed at a distance of 2 to 6 m.


2021 ◽  
Vol 118 (43) ◽  
pp. e2112825118
Author(s):  
Giovanni Bortolami ◽  
Gregory A. Gambetta ◽  
Cédric Cassan ◽  
Silvina Dayer ◽  
Elena Farolfi ◽  
...  

In the context of climate change, plant mortality is increasing worldwide in both natural and agroecosystems. However, our understanding of the underlying causes is limited by the complex interactions between abiotic and biotic factors and the technical challenges that limit investigations of these interactions. Here, we studied the interaction between two main drivers of mortality, drought and vascular disease (esca), in one of the world’s most economically valuable fruit crops, grapevine. We found that drought totally inhibited esca leaf symptom expression. We disentangled the plant physiological response to the two stresses by quantifying whole-plant water relations (i.e., water potential and stomatal conductance) and carbon balance (i.e., CO2 assimilation, chlorophyll, and nonstructural carbohydrates). Our results highlight the distinct physiology behind these two stress responses, indicating that esca (and subsequent stomatal conductance decline) does not result from decreases in water potential and generates different gas exchange and nonstructural carbohydrate seasonal dynamics compared to drought.


Plant Disease ◽  
2021 ◽  
Author(s):  
Ahmed Sabra ◽  
Mohammed Ali Al Saleh ◽  
I. M. Alshahwan ◽  
Mahmoud A. Amer

Tomato (Solanum lycopersicum L.) is the most economically important member of family Solanaceae and cultivated worldwide and one of the most important crops in Saudi Arabia. The aim of this study is screening of the most common viruses in Riyadh region and identified the presence of tomato brown rugose fruit virus (ToBRFV) in Saudi Arabia. In January 2021, unusual fruit and leaf symptoms were observed in several greenhouses cultivating tomatoes commercially in Riyadh Region, Saudi Arabia. Fruit symptoms showed irregular brown spots, deformation, and yellowing spots which render the fruits non-marketable, while the leaf symptoms included mottling, mosaic with dark green wrinkled and narrowing. These plants presented the symptoms similar to those described in other studies (Salem et al., 2015, Luria et al., 2017). A total 45 Symptomatic leaf samples were collected and tested serologically against suspected important tomato viruses including: tomato chlorosis virus, tomato spotted wilt virus, tomato yellow leaf curl virus, tomato chlorotic spot virus, tomato aspermy virus, tomato bushy stunt virus, tomato black ring virus, tomato ringspot virus, tomato mosaic virus, pepino mosaic virus and ToBRFV using Enzyme linked immunosorbent assay (ELISA) test (LOEWE®, Biochemica, Germany), according to the manufacturers' instructions. The obtained results showed that 84.4% (38/45) of symptomatic tomato samples were infected with at least one of the detected viruses. The obtained results showed that 55.5% (25/45) of symptomatic tomato samples were found positive to ToBRFV, three out of 25 samples (12%) were singly infected, however 22 out of 45 (48.8%) had mixed infection between ToBRFV and with at least one of tested viruses. A sample with a single infection of ToBRFV was mechanically inoculated into different host range including: Chenopodium amaranticolor, C. quinoa, C. album, C. glaucum, Nicotiana glutinosa, N. benthamiana, N. tabacum, N. occidentalis, Gomphrena globosa, Datura stramonium, Solanum lycopersicum, S. nigrum, petunia hybrida and symptoms were observed weekly and the systemic presence of the ToBRFV was confirmed by RT-PCR and partial nucleotide sequence. A Total RNA was extracted from DAS-ELISA positive samples using Thermo Scientific GeneJET Plant RNA Purification Mini Kit. Reverse transcription-Polymerase chain reaction (RT-PCR) was carried out using specific primers F-3666 (5´-ATGGTACGAACGGCGGCAG-3´) and R-4718 (5´-CAATCCTTGATGTG TTTAGCAC-3´) which amplified a fragment of 1052 bp of Open Reading Frame (ORF) encoding the RNA-dependent RNA polymerase (RdRp). (Luria et al. 2017). RT-PCR products were analyzed using 1.5 % agarose gel electrophoresis. RT-PCR products were sequenced in both directions by Macrogen Inc. Seoul, South Korea. Partial nucleotide sequences obtained from selected samples were submitted to GenBank and assigned the following accession numbers: MZ130501, MZ130502, and MZ130503. BLAST analysis of Saudi isolates of ToBRFV showed that the sequence shared nucleotide identities ranged between 98.99 % to 99.50 % among them and 98.87-99.87 % identity with ToBRFV isolates from Palestine (MK881101 and MN013187), Turkey (MK888980, MT118666, MN065184, and MT107885), United Kingdom (MN182533), Egypt (MN882030 and MN882031), Jordan (KT383474), USA (MT002973), Mexico (MK273183 and MK273190), Canada (MN549395) and Netherlands (MN882017, MN882018, MN882042, MN882023, MN882024, and MN882045). To our knowledge, this is the first report of occurrence of ToBRFV infecting tomato in Saudi Arabia which suggests its likely introduction by commercial seeds from countries reported this virus and spread in greenhouses through mechanical means. The author(s) declare no conflict of interest. Keywords: Tomato brown rugose fruit virus, tomato, ELISA, RT-PCR, Saudi Arabia References: Luria N, et al., 2017. PLoS ONE 12(1): 1-19. Salem N, et al., 2015. Archives of Virology 161(2): 503-506. Fig. 1. Symptoms caused by ToBRFV showing irregular brown spots, deformation, yellowing spots on fruits (A, B, C) and bubbling and mottling, mosaic with dark green wrinkled and narrowing on leaf (D).


2021 ◽  
Vol 7 (9) ◽  
pp. 770
Author(s):  
Giovanni Del Frari ◽  
Helena Oliveira ◽  
Ricardo Boavida Ferreira

Esca is a major grapevine trunk disease that heavily affects vineyards in the Northern hemisphere. The etiology and epidemiology of this disease have been subject of dispute ever since the earliest disease reports. The reason behind such debate is the presence of multiple internal and external symptoms, as well as several putative and confirmed wood pathogens. While the role of pathogenic fungi, as causal agents of wood symptoms, has been thoroughly assessed, their role in the expression of leaf symptoms remains to be fully elucidated. In this review, we analyzed etiological and epidemiological data, with a special focus on the microbiological aspect of esca and the involvement of Hymenochaetales (Basidiomycota). Vineyard studies have associated leaf symptoms with the presence of white rot, most frequently caused by Fomitiporia mediterranea (Hymenochaetales), while tracheomycotic fungi are commonly found, with similar abundance, in symptomatic and asymptomatic vines. Pathogenicity trials have excluded a direct effect of Hymenochaetales species in triggering leaf symptoms, while the data concerning the role of tracheomycotic fungi remains controversial. Recent microbiome studies confirmed that F. mediterranea is more abundant in leaf-symptomatic vines, and treatments that effectively control leaf symptoms, such as sodium arsenite spray and trunk surgery, act directly on the abundance of F. mediterranea or on the presence of white rot. This suggest that the simultaneous presence of Hymenochaetales and tracheomycotic fungi is a pre-requisite for leaf symptoms; however, the relation among fungal pathogens, grapevine and other biotic and abiotic factors needs further investigation.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1933
Author(s):  
Giovanni Beccari ◽  
Mara Quaglia ◽  
Francesco Tini ◽  
Euro Pannacci ◽  
Lorenzo Covarelli

In 2017, in a new Chenopodium quinoa cultivation area (Central Italy), emergence failures of the Titicaca, Rio Bamba, and Real varieties, whose seeds were obtained the previous year (2016) in the same location, were observed. Moreover, leaf disease symptoms on the Regalona variety, whose seeds came from Chile, were detected. Visual and microscopic analyses showed the presence of browning/necrotic symptoms on the seeds of the three varieties whose emergence in the field had failed. In addition, their in vitro germination rates were strongly compromised. Fusarium spp. was isolated with high incidence from Titicaca, Rio Bamba, and Real seeds. Among the detected Fusarium species, in the phylogenetic analysis, the dominant one clustered in the sub-clade Equiseti of the Fusarium incarnatum-equiseti (FIESC) species complex. Instead, the pathogen associated with Regalona leaf symptoms was identified, by morphological and molecular features, as Peronospora variabilis, the causal agents of downy mildew. This is the first report of both P. variabilis and F. equiseti on C. quinoa in Italy. Species-specific primers also detected P. variabilis in Regalona seeds. These results underline the importance of pathogen monitoring in new quinoa distribution areas, as well as of healthy seed production and import for successful cultivation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Loris Ouadi ◽  
Emilie Bruez ◽  
Sylvie Bastien ◽  
Amira Yacoub ◽  
Cindy Coppin ◽  
...  

Fungal species involved in Esca cause the formation of grapevine wood necroses. It results in the deterioration of vascular network transport capacity and the disturbance of the physiological processes, leading to gradual or sudden grapevine death. Herein, for two consecutive growing seasons, a detailed analysis of the structural (wood necrosis and leaf discoloration) and physiological parameters related to the water use of healthy and esca-symptomatic grapevines was conducted. Measurements were carried out on 17-year-old grapevines that expressed, or not, Esca-leaf symptoms in a vineyard of the Bordeaux region (France). Whole-plant transpiration was recorded continuously from pre-veraison to harvest, using noninvasive sap flow sensors. Whole-plant transpiration was systematically about 40–50% lower in Esca-diseased grapevines compared with controls, and this difference can be observed around 2 weeks before the first Esca-foliar symptoms appeared in the vineyard. Unlike grapevine sap flow disruption, structural (e.g., leaf discolorations), functional (e.g., stomatal conductance, photosynthetic activity, phenolic compounds), and genetic (e.g., expression of leaf-targeted genes) plant responses were only significantly impacted by Esca at the onset and during leaf symptoms development. We conclude that sap flow dynamic, which was related to a high level of a white-rot necrosis, provides a useful tool to predict plant disorders due to Esca-grapevine disease.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Qingtong Ye ◽  
Jingyi Jia ◽  
Ishara S. Manawasinghe ◽  
Xinghong Li ◽  
Wei Zhang ◽  
...  

AbstractThe Esca disease complex includes some of the most important trunk diseases of grapevines (Vitis spp.) and causes serious yield losses in grape production worldwide. However, there has been no detailed study on its presence and associated pathogens in China. During 2017–2019, a preliminary field survey was conducted in eight vineyards in Hebei and Ningxia provinces, China when unusual foliar symptoms were observed. Symptoms were distinct tiger striped leaves, which are typical of grapevine leaf stripe disease (GLSD), one of the most common diseases in the Esca complex. Tiger-stripe leaf symptoms were found in four vineyards, and incidence was cultivar dependent varying with vineyard and year. A total of 266 fungal isolates were obtained from wood tissues of grapevines with typical foliar symptoms of GLSD. Based on morphological characters and multigene-combined phylogenetic analyses, the Ascomycete Phaeoacremonium minimum, one of the pathogens associated with Esca complex was identified. The basidiomycete Fomitiporia punicata, which has never been reported infecting grapevine, was also identified and found to be associated with wood rot in grapevine. The remaining isolates included some known wood pathogens, such as Neofusicoccum species and Diaporthe species. Koch’s postulates were performed in the greenhouse, confirming that both F. punicata and P. minimum caused leaf interveinal chlorosis and necrosis that resembled the GLSD symptoms of the Esca complex observed in the field. The present study provides the first detailed report of the Esca complex in China. In addition, this is the first record of F. punicata associated with Esca complex of grapevine worldwide. The results of this study provide new insights into the knowledge of the Esca complex.


Author(s):  
G Bortolami ◽  
E Farolfi ◽  
E Badel ◽  
R Burlett ◽  
H Cochard ◽  
...  

Abstract Hydraulic failure has been extensively studied during drought-induced plant dieback, but its role in plant-pathogen interactions is under debate. During esca, a grapevine (Vitis vinifera) disease, symptomatic leaves are prone to irreversible hydraulic dysfunctions but little is known about the hydraulic integrity of perennial organs over the short- and long-term. We investigated the effects of esca on stem hydraulic integrity in naturally infected plants within a single season and across season(s). We coupled direct (ks) and indirect (kth) hydraulic conductivity measurements, and tylose and vascular pathogen detection with in vivo X-ray microtomography visualizations. We found xylem occlusions (tyloses), and subsequent loss of stem ks, in all of the shoots with severe symptoms (apoplexy) and in more than 60% of the shoots with moderate symptoms (tiger-stripe), and no tyloses in shoots that were currently asymptomatic. In vivo stem observations demonstrated that tyloses were observed only when leaf symptoms appeared, and resulted in more than 50% PLC in 40% of symptomatic stems, unrelated to symptom age. The impact of esca on xylem integrity was only seasonal and no long-term impact of disease history was recorded. Our study demonstrated how and to what extent a vascular disease such as esca, affecting xylem integrity, could amplify plant mortality by hydraulic failure.


Sign in / Sign up

Export Citation Format

Share Document