scholarly journals First Report of Ranunculus mild mosaic virus on Ranunculus asiaticus in Yunnan Province, China

Plant Disease ◽  
2008 ◽  
Vol 92 (11) ◽  
pp. 1585-1585 ◽  
Author(s):  
J. H. Wang ◽  
S. Zhao ◽  
X. M. Yang

In June 2007, a new viral disease occurred in commercial fields of Ranunculus asiaticus in the Yunnan Province of China. Infected plants exhibited mosaic symptoms and growth abnormalities. Viral disease incidence for this ornamental crop host in the Yunnan Province was estimated to range from 10 to 20%. Electron microscopic examination of negatively stained leaf-dip preparations from symptomatic plants identified long, flexuous linear particles (approximately 800 nm). The samples were tested using indirect antigen-coated plate (ACP)-ELISA. ACP-ELISA results showed that the leaf samples from symptomatic plants reacted positively to the potyvirus group antibody (Agdia Inc., Eklhart, IN). Total nucleic acid extracted from symptomatic plants was tested using reverse transcription (RT)-PCR with primers (S 5′-GGNAAAAYAGYGGNCARCC-3′; M4: 5′-GTTTTCCCAGTCACGAC-3′ [N = A, G, C, or T; Y = C or T; and R = A or G]) designed to amplify the 3′ terminal region of genomic RNA of the genus Potyvirus (1). RT-PCR produced a 1,650-bp amplification product that was cloned and sequenced (GenBank Accession No. EU684747). The sequenced portion showed 90 and 99% identity with the Ranunculus mild mosaic virus (RMMV) isolates (GenBank Accession Nos. DQ152191 and EF445546) from Italy and Israel, respectively (2). To our knowledge, this is the first report of RMMV in China. Infection from this virus may cause losses for cut-flower production of Ranunculus asiaticu and it is also a potential threat for international trade of Ranunculus germplasm. References: (1) J. Chen and J. P. Chen. Chin. J. Virol. 18:371, 2002. (2) M. Turina et al. Phytopathology 96:560, 2006.

Plant Disease ◽  
2011 ◽  
Vol 95 (10) ◽  
pp. 1320-1320 ◽  
Author(s):  
C. Zou ◽  
J. Meng ◽  
Z. Li ◽  
M. Wei ◽  
J. Song ◽  
...  

Yams (Dioscorea spp.) are widely grown in China as vegetables and herbal medicine. However, studies on viral diseases on yams are still limited. As a pilot project of a government initiative for improving yam productivity, a small study was conducted in Guangxi, a southern province of China, on viral disease in yams. Incidence of virus-like disease for the three extensively grown D. alata cultivars, GH2, GH5, and GH6, were 12 to 40%, 12 to 29%, and 11 to 25%, respectively, as found in a field survey with a five-plot sampling method in 2010. A total of 112 leaf samples showing mosaic or mottling or leaves without symptoms were collected from the cvs. GH2, GH5, GH6, and seven additional cultivars (D. alata cvs. GY2, GY23, GY47, GY69, GY62, GY72, and D. batatas cv. Tiegun). To determine if the symptoms were caused by Yam mild mosaic virus (YMMV; genus Potyvirus, family Potyviridae), total RNA was extracted from leaves with a commercial RNA purification kit (TIANGEN, Beijing, China), and reverse-transcription (RT)-PCR was conducted with a YMMV-specific primer pair (4) that amplifies the 3′-terminal portion of the viral genome. A PCR product with the predicted size of 262 bp was obtained from samples of GH5 (number testing positive of total number of leaves = 5 of 12), GH6 (24 of 42), and GY72 (1 of 1), but not from asymptomatic leaves. PCR products from a GH5 sample (YMMV-Nanning) and a GH6 sample (YMMV-Luzhai) were cloned and sequenced using an ABI PRISM 3770 DNA Sequencer. The two PCR products were 97% identical at nucleotide (nt) level and with the highest homology (89% identity) to a YMMV isolate (GenBank Accession No. AJ305466). To further characterize the isolates, degenerate primers (2) were used to amplify viral genome sequence corresponding to the C-terminal region of the nuclear inclusion protein b (NIb) and the N-terminal region of the coat protein (CP). These 781-nt fragments were sequenced and a new primer, YMMV For1 (5′-TTCATGTCGCACAAAGCAGTTAAG-3′) corresponding to the NIb region, was designed and used together with primer YMMV UTR 1R to amplify a fragment that covers the complete CP region of YMMV by RT-PCR. These 1,278-nt fragments were sequenced (GenBank Accession Nos. JF357962 and JF357963). CP nucleotide sequences of the YMMV-Nanning and YMMV-Luzhai isolates were 94% similar, while amino acid sequences were 99% similar. BLAST searches revealed a nucleotide identity of 82 to 89% and a similarity of 88 to 97% for amino acids to sequences of YMMV isolates (AF548499 and AF548519 and AAQ12304 and BAA82070, respectively) in GenBank. YMMV is known to be prevalent on D. alata in Africa and the South Pacific, and has recently been identified in the Caribbean (1) and Colombia (3). To our knowledge, this is the first report of the natural occurrence of YMMV in China and it may have implications for yam production and germplasm exchange within China. References: (1) M. Bousalem and S. Dallot. Plant Dis. 84:200, 2000. (2) D. Colinet et al. Phytopathology 84:65, 1994. (3) S. Dallot et al. Plant Dis. 85:803, 2001. (4) R. A. Mumford and S. E. Seal. J. Virol. Methods 69:73, 1997.


Plant Disease ◽  
2012 ◽  
Vol 96 (8) ◽  
pp. 1230-1230 ◽  
Author(s):  
M. E. Gratsia ◽  
P. E. Kyriakopoulou ◽  
A. E. Voloudakis ◽  
C. Fasseas ◽  
I. E. Tzanetakis

Uncommon, viruslike symptoms (yellowing, line patterns, leaf deformation, and necrosis), were observed in spinach fields in the Marathon area, Greece in 2004. Seedlings from the same seed lot, grown in the greenhouse, also developed the same viruslike symptoms, indicating that the causal agent(s) of the disorder is seed-transmissible. Spinach seedlings of the same variety but a different lot and herbaceous indicators (Chenopodium quinoa, C. amaranticolor, Sonchus oleraceus, and Nicotiana benthamiana) were mechanically inoculated with infected material. Spinach developed yellowing or necrotic spots whereas indicators showed variety of symptoms including mosaic, vein banding, and necrotic lesions. Virus purifications, double-stranded RNA extractions, cloning, and sequencing (2,3) followed by a combination of molecular (reverse transcription [RT]-PCR and immunocapture RT-PCR) and serological (ELISA) techniques with antisera provided by Dr. Avgelis were performed as described (4), verifying the presence of two viruses in the diseased seedlings: Sowbane mosaic virus (SoMV), a sobemovirus, was present in spinach and indicators with mottling and leaf deformation, whereas Olive mild mosaic virus (OMMV), a necrovirus, was present in plants with necrotic spots. All RT-PCR products amplified with primers SoMV-F (5′-CAAATGGTCTTGGTCAGCAGTC)/SoMV-R (5′-GCATACGCTCGACGATCTG) and OMMV-F (5′-CAAACCCAGCCTGTGTTCGATG)/OMMV-R (5′-CATCAGTTTGGTAATCCATTGA) were sequenced and found to confirm the other results. The SoMV-spinach isolate polyprotein gene sequence (GenBank Accession No. DQ450973) has 95% sequence identity with the type isolate from C. quinoa (GenBank Accession No. GQ845002), whereas the OMMV-spinach isolate (GenBank Accession No. JQ288895) has 92% sequence identity with the OMMV type isolate from olive (GenBank Accession No. AY616760). SoMV has been found to naturally infect spinach in the Netherlands (1) and, to our knowledge, this is the first report on spinach in Greece. The presence of OMMV in spinach is, to our knowledge, the first report worldwide. Its natural host range is limited to olive, tulip, and now spinach. OMMV might be transmitted by Olpidium spp. and may, according to data of its close relatives, persist in the soil for several decades. Pollen- and seedborne viruses (PSVs) like sobemoviruses and necroviruses are of particular importance for a crop like spinach where crop increase takes place in small, seed production-designated areas. If a PSV spreads in such an area it has the potential to become a major problem for the industry, especially when it remains undetected. Infected seed can be shipped worldwide with PSVs, causing diseases and becoming endemic in areas where they were absent. For this reason and the fact that field losses can exceed 50%, rigorous monitoring for the presence of SoMV and OMMV in seed fields is essential to minimize the possibility of the viruses moving to new areas. References: (1) L. Bos and N. Huijberts. Eur. J. Plant Pathol. 102:707, 1996. (2) S. M. Girgis et al., Eur. J. Plant Pathol. 125:203, 2009, (3) I. E. Tzanetakis et al. J. Virol. Methods 124:73, 2005. (4) I. E. Tzanetakis et al. Virus Res. 121:199, 2006.


2007 ◽  
Vol 142 (1-2) ◽  
pp. 41-49 ◽  
Author(s):  
Pierre-Yves Teycheney ◽  
Isabelle Acina ◽  
Benham E.L. Lockhart ◽  
Thierry Candresse

2016 ◽  
Vol 161 (4) ◽  
pp. 1079-1082 ◽  
Author(s):  
Dawit B. Kidanemariam ◽  
Adane D. Abraham ◽  
Amit C. Sukal ◽  
Timothy A. Holton ◽  
James L. Dale ◽  
...  

Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 530-530 ◽  
Author(s):  
Y.-M. Liao ◽  
X.-J. Gan ◽  
B. Chen ◽  
J.-H. Cai

Luohanguo, Siraitia grosvenorii (Swingle) C. Jeffrey, is a perennial cucurbitaceous plant that is an economically important medicinal and sweetener crop in Guangxi province, China. Surveys conducted during the summer to fall seasons of 2003-2004 in northern Guangxi showed symptoms typical of a viral disease, including leaf mottling, mosaic, vein clearing, curling, and shoestring-like distortion in the field. Mechanical inoculation of sap from leaves of symptomatic plants collected from the surveyed areas caused similar symptoms on tissue culture-derived healthy Luohanguo plants. Two sequences of 0.7 and 1.6 kb with 88 and 97% identity to Papaya ringspot virus (PRSV) and Zucchini yellow mosaic virus (ZYMV) were amplified using reverse transcription-polymerase chain reaction (RT-PCR) with purified flexuous viral particles or total RNA extracted from the symptomatic Luohanguo leaves as templates with conserved degenerate potyvirus primers (1). To confirm the results, primers specific for PRSV (PP1/PP2, genome coordinates 4064-4083/5087-5069, GenBank Accession No X97251) and ZYMV (ZP1/ZP2, genome coordinates 5540-5557/7937-7920, GenBank Accession No L31350) were used to perform RT-PCR from the same RNA templates. The expected 1.0- and 2.3-kb fragments were amplified and they were 90 and 95% identical to PRSV and ZYMV in sequence, respectively. Watermelon mosaic virus was not detected. To our knowledge, this is the first report of the occurrence of PRSV and ZYMV in Luohanguo. Reference: (1) A. Gibbs et al. J. Virol. Methods 63:9, 1997.


Plant Disease ◽  
2000 ◽  
Vol 84 (2) ◽  
pp. 200-200 ◽  
Author(s):  
M. Bousalem ◽  
S. Dallot

Naturally infected Dioscorea alata plants showing mild mosaic were collected in 1998 on the island of Martinique in the Caribbean. Isolates were first screened by double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies raised against Yam mosaic virus (YMV) and antigen-coated plate ELISA with universal potyvirus monoclonal antibodies (Agdia, Elkhart, IN). A positive reaction was obtained only with the universal potyvirus antiserum. Immunocapture reverse-transcriptase polymerase chain reaction was performed for specific detection of Yam mild mosaic virus (YMMV [3]) and YMV. A product with the predicted size of 249 bp was obtained with YMMV primers. YMMV is a recently recognized distinct potyvirus infecting D. alata in West Africa and the South Pacific (2–4). It was originally described as Yam virus I and is synonymous with Dioscorea alata virus (4). To characterize the YMMV Martinique isolate, total RNA was extracted, and universal potyvirus degenerate primers (1) were used to amplify a 700-bp fragment that included the core and C-terminal region of the coat protein (CP) and 3′ untranslated region (3′UTR). Sequence information generated (EMBL AJ250336) from the cloned fragment was compared with sequences of other yam potyviruses. Sequence comparisons of the partial CP (453 nt) showed a similarity of 94.6% (amino acids [aa]) with the YMMV isolate from Papua New Guinea (EMBL AB022424 [2]); 72.2% (aa) with the Japanese yam mosaic virus (JYMV) isolate (EMBL AB016500); and 67 to 73% (aa) with 27 YMV isolates. These sequences are most diverse in the 3′UTR, which showed a similarity of 72.8% with the YMMV Papua New Guinea isolate, 30% with the JYMV isolate, and 26% with the YMV isolates. These results confirm, as previously shown by S. Fuji et al. (2), that YMMV should be classified as a new potyvirus of yam. This is the first report of the natural occurrence of YMMV in the Caribbean. References: (1) Colinet et al. Phytopathology 84:65, 1994. (2) S. Fuji et al. Arch Virol. 144:1415, 1999. (3) R. A. Munford and S. E. Seal. J. Virol. Methods 69:73, 1997. (4) B. O. Odu et al. Ann. Appl. Biol. 134:65, 1999.


Plant Disease ◽  
2021 ◽  
Author(s):  
Gabriel Madoglio Favara ◽  
Felipe Franco de Oliverira ◽  
Camila Geovana Ferro ◽  
Heron Delgado Kraide ◽  
Eike Yudi Nishimura Carmo ◽  
...  

Tradescantia spathacea (family Commelinaceae) is cultivated worldwide as an ornamental (Golczyk et al., 2013) and as medicinal plant (Tan et al., 2020). In 2019, 90 of ~180 plants of T. spathacea, grown in two beds of 4 m2 and exhibiting leaf mosaic were found in an experimental area at ESALQ/USP (Piracicaba municipality, São Paulo state, Brazil). Potyvirus-like flexuous filamentous particles were observed by transmission electron microscopy in foliar extracts of two symptomatic plants stained with 1% uranyl acetate. Total RNA was extracted using the Purelink viral RNA/DNA kit (Thermo Fisher Scientific) from leaves of two symptomatic plants and separately subjected to a reverse transcription polymerase chain reaction (RT-PCR). The potyviruses degenerate pairs of primers CIFor/CIRev (Ha et al. 2008), which amplifies a fragment corresponding to part of the cylindrical inclusion protein gene, and WCIEN/PV1 (Maciel et al. 2011), which amplifies a fragment containing part of the capsid protein gene and the 3′ untranslated region, were used. The expected amplicons (~700bp) were obtained from both total RNA extracts. Two amplicons from one sample were purified using the Wizard SV Gel and PCR Clean-Up System kit (Promega) and directly sequenced in both directions at Macrogen Inc (Seoul, South Korea). The obtained nucleotide sequences (GenBank MW430005 and MW503934) shared 95.32% and 97.79% nucleotide identity, respectively, with the corresponding sequences of the Brazilian isolate of the potyvirus costus stripe mosaic virus (CoSMV, MK286375) (Alexandre et al. 2020). Extract from an infected plant of T. spathacea was mechanically inoculated in 10 healthy plants of T. spathacea and two plants each of the following species: Capsicum annuum, Chenopodium amaranticolor, Commelina benghalensis, Datura stramonium, Gomphrena globosa, Nicandra physaloides, Nicotiana tabacum cvs. Turkish and Samsun, Solanum lycopersicum, T. palida, and T. zebrina. All T. spathacea plants exhibited mosaic and severe leaf malformation. C. benghalensis plants developed mild mosaic, whereas infected T. zebrina plants were asymptomatic. The plants of other species were not infected. RT-PCR with specific CoSMV primers CoSMVHC-F and CoSMVHC-R (Alexandre et al. 2020) confirmed the infection. Nucleotide sequences of amplicons obtained from experimentally inoculated T. spathacea and T. zebrina (MW430007 and MW430008) shared 94.56% and 94.94% identity with the corresponding sequence of a Brazilian CoSMV isolate (MK286375). None of eight virus-free plants of T. spathacea inoculated with CoSMV using Aphis craccivora exhibited symptoms, nor was CoSMV detected by RT-PCR. Lack of CoSMV transmission by A. solanella, Myzus persicae, and Uroleucon sonchi was previously reported (Alexandre et al. 2020). T. spathacea plants are commonly propagated vegetatively, and by seeds. Virus-free seeds, if available, can provide an efficient and easy way to obtain healthy plants. Only three viruses were reported in plants of the genus Tradescantia: Commelina mosaic virus, tradescantia mild mosaic virus, and a not fully characterized potyvirus (Baker and Zettler, 1988; Ciuffo et al., 2006; Kitajima 2020). CoSMV was recently reported infecting Costus spiralis and C. comosus (Alexandre et al. 2020). As far as we know, this is the first report of CoSMV infecting T. spathacea plants.


Plant Disease ◽  
2003 ◽  
Vol 87 (9) ◽  
pp. 1150-1150 ◽  
Author(s):  
H. Reichel ◽  
A. K. Martínez ◽  
J. A. Arroyave ◽  
R. Sedano ◽  
F. J. Morales ◽  
...  

Plantains (Musa AAB) are important sources of food and income for millions of people in Colombia and other developing countries. Colombia is the largest producer of plantains (2) and the third largest exporter of bananas in the world. In 2001, plants of ‘Dominico-Hartón’ plantain showing mild chlorotic streak symptoms were observed in northwestern Colombia. Electron microscopy of symptomatic tissue extracts revealed the presence of filamentous virus-like particles approximately 800 nm long. Immunocapture reverse-transcription polymerase chain reaction was performed to test for the presence of Banana mild mosaic virus (BanMMV) as described by J. E. Thomas (unpublished, Queensland Department of Primary Industries, Australia) and Sharman et al. (3). For polymerase chain reaction (PCR), the upstream primer No. 193 (5′-CAC TTA GGT TTG TGT GAT GT-3′) (designed in this study by using the computer Program DNAMAN Version 4.13) and the downstream primer Poty1 (5′-GGA TCC CGG GTT TTT TTT TTT TTT TTT V-3′) (1,3; J. E. Thomas, unpublished, Queensland Department of Primary Industries, Australia) were used. Amplification products of the expected size (approximately 900 bp) were obtained and sequenced after cloning in a pCR2.1 plasmid vector. Analyses of nucleic acid sequences using the international sequence databases and the BLAST program yielded nucleotide and amino acid sequence similarities of 80 to 83% and 90 to 92%, respectively, with an Australian isolate of BanMMV (GenBank Accession No. AF314662). The coat protein (CP) gene of the Colombian BanMMV isolate consists of 717 nucleotides. When the CP of the Colombian BanMMV isolates (GenBank Accession Nos. AY319331, AY319332, and AY319333) was compared with the CP of the Australian isolate, a highly variable region was observed in the N-terminus region. To our knowledge, this is the first report of BanMMV isolated from plantains in Colombia and the presence of molecular variability in the CP of BanMMV isolates. BanMMV has been found in Colombia associated with Banana streak virus and Cucumber mosaic virus in plantain. References: (1) A. Gibbs and A. Mackenzie. J. Virol.Methods 63:9, 1997 (2) N. S. Price. Infomusa 8(2):26, 1999. (3) M. Sharman et al. J. Virol. Methods 89:75, 2000.


Sign in / Sign up

Export Citation Format

Share Document