scholarly journals Occurrence of Stem and Crown Rot of Gaillardia grandiflora, Caused by Sclerotinia sclerotiorum, in California

Plant Disease ◽  
1997 ◽  
Vol 81 (11) ◽  
pp. 1334-1334 ◽  
Author(s):  
S. T. Koike

Gaillardia grandiflora, or blanket flower, is a perennial, herbaceous composite used as an ornamental plant. Following a series of rains in January, 1997, landscape plantings of G. grandiflora in Monterey County, CA, exhibited symptoms of a previously undescribed disease. Affected stems turned gray to tan and became dry and brittle. Large branches often developed cracks. Attached leaves and flowers wilted and turned tan. Infections on the smaller stems and branches sometimes spread to the main stem and crown of the plant, resulting in plant death. White mycelia and large, irregular, black sclerotia (3 to 6 mm in diameter) were occasionally observed on external surfaces of infected stems and crowns. However, the internal pith cavity of diseased stems often contained abundant mycelia and sclerotia. Isolations from symptomatic stems, mycelia, and sclerotia produced colonies of Sclerotinia sclerotiorum. Pathogenicity was confirmed by culturing representative isolates on potato dextrose agar and allowing the fungus to colonize sterilized toothpicks placed on the surface of the agar (1). The pointed tips of the toothpicks were inserted approximately 3 mm deep into stems of potted G. grandiflora cv. Goblin plants, which were incubated in plastic bags for 48 h and then kept in a greenhouse. After 10 to 14 days, symptoms and mycelia similar to those originally observed developed on inoculated plants and S. sclerotiorum was reisolated. Stems on plants left for 21 or more days contained abundant sclerotia. Plants inoculated with sterile, uncolonized toothpicks did not develop disease. This pathogenicity test was repeated and the results were similar. This is the first report of G. grandiflora as a host of S. sclerotiorum. Reference: (1) Y. Yanar et al. Plant Dis. 80:342, 1996.

Plant Disease ◽  
2003 ◽  
Vol 87 (3) ◽  
pp. 313-313 ◽  
Author(s):  
B. A. Edmunds ◽  
M. L. Gleason

Sclerotium rolfsii var. delphinii was isolated from the bases of discolored petioles on wilted, yellow leaves of Pulmonaria longifolia (cultivar unknown), an herbaceous perennial growing in a landscape planting in Ames, IA. White mycelia and brick red, 2- to 3-mm-diameter sclerotia were found on affected tissue and nearby soil. The isolates were identified as S. rolfsii var. delphinii based on the formation of dark red, irregularly shaped, >2.0-mm-diameter sclerotia on potato dextrose agar (PDA) around the edge of the culture (1,2). Pathogenicity tests were conducted by inoculating 5-month-old P. longifolia cv. E. B. Anderson growing in 20-cm-diameter pots in a greenhouse at 25 to 30°C. Inoculum was produced by transferring plugs from a 1-week-old culture of the S. rolfsii var. delphinii isolate on PDA to autoclaved carrot disks. After 2 days of incubation, a mycelium-infested carrot disk was placed on the soil surface at the base of each plant. Six plants were inoculated and six plants served as uninoculated controls. All plants were enclosed in plastic bags to maintain high humidity. The pathogenicity test was repeated once. All inoculated plants developed characteristic symptoms within 10 days, whereas all control plants remained symptomless. Sclerotia developed on infected tissue and the media surface, and S. rolfsii var. delphinii was reisolated on PDA from symptomatic petioles. To our knowledge, this is the first report of petiole rot of P. longifolia caused by S. rolfsii var. delphinii. References: (1) Z. K. Punja. Annu. Rev. Phytopathol. 23:97, 1985. (2) Z. K. Punja and A. Damiani. Mycologia 88(5):694, 1996.


Plant Disease ◽  
2006 ◽  
Vol 90 (8) ◽  
pp. 1109-1109 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
M. L. Gullino

Lamb's lettuce or corn salad (Valerianella olitoria) is increasingly grown in Italy and used primarily in the preparation of mixed processed salad. In the fall of 2005, plants of lamb's lettuce, cv Trophy, exhibiting a basal rot were observed in some commercial greenhouses near Bergamo in northern Italy. The crown of diseased plants showed extensive necrosis, progressing to the basal leaves, with plants eventually dying. The first symptoms, consisting of water-soaked zonate lesions on basal leaves, were observed on 30-day-old plants during the month of October when temperatures ranged between 15 and 22°C. Disease was uniformly distributed in the greenhouses, progressed rapidly in circles, and 50% of the plants were affected. Diseased tissue was disinfested for 1 min in 1% NaOCl and plated on potato dextrose agar amended with 100 μg/liter of streptomycin sulfate. A fungus with the morphological characteristics of Rhizoctonia solani was consistently and readily isolated and maintained in pure culture after single-hyphal tipping (3). The five isolates of R. solani, obtained from affected plants successfully anastomosed with tester isolate AG 4, no. RT 31, received from R. Nicoletti of the Istituto Sperimentale per il Tabacco, Scafati, Italy (2). The hyphal diameter at the point of anastomosis was reduced, and cell death of adjacent cells occurred (1). Pairings were also made with AG 1, 2, 3, 5, 7, and 11 with no anastomoses observed between the five isolates and testers. For pathogenicity tests, the inoculum of R. solani (no. Rh. Vale 1) was grown on autoclaved wheat kernels at 25°C for 10 days. Plants of cv. Trophy were grown in 10-liter containers (20 × 50 cm, 15 plants per container) on a steam disinfested substrate (equal volume of peat and sand). Inoculations were made on 20-day-old plants by placing 2 g of infected wheat kernels at each corner of the container with 3 cm as the distance to the nearest plant. Plants inoculated with clean wheat kernels served as controls. Three replicates (containers) were used. Plants were maintained at 25°C in a growth chamber programmed for 12 h of irradiation at a relative humidity of 80%. The first symptoms, consisting of water-soaked lesions on the basal leaves, developed 5 days after inoculation with crown rot and plant kill in 2 weeks. Control plants remained healthy. R. solani was consistently reisolated from infected plants. The pathogenicity test was carried out twice with similar results. This is, to our knowledge, the first report of R. solani on lamb's lettuce in Italy as well as worldwide. The isolates were deposited at the AGROINNOVA fungal collection. The disease continues to spread in other greenhouses in northern Italy. References: (1) D. Carling. Rhizoctonia Species: Pages 37–47 in: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. B. Sneh et al., eds. Kluwer Academic Publishers, the Netherlands, 1996. (2) J. Parmeter et al. Phytopathology, 59:1270, 1969. (3) B. Sneh et al. Identification of Rhizoctonia Species. The American Phytopathological Society, St. Paul, MN, 1996.


Plant Disease ◽  
2006 ◽  
Vol 90 (9) ◽  
pp. 1260-1260 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
D. Minerdi ◽  
M. L. Gullino

Penstemon barbatus (Cav.) Roth (synonym Chelone barbata), used in parks and gardens and sometimes grown in pots, is a plant belonging to the Scrophulariaceae family. During the summers of 2004 and 2005, symptoms of a root rot were observed in some private gardens located in Biella Province (northern Italy). The first symptoms resulted in stunting, leaf discoloration followed by wilt, root and crown rot, and eventually, plant death. The diseased tissue was disinfested for 1 min in 1% NaOCl and plated on a semiselective medium for Oomycetes (4). The microorganism consistently isolated from infected tissues, grown on V8 agar at 22°C, produced hyphae with a diameter ranging from 4.7 to 5.2 μm. Sporangia were papillate, hyaline, measuring 43.3 to 54.4 × 26.7 to 27.7 μm (average 47.8 × 27.4 μm). The papilla measured from 8.8 to 10.9 μm. These characteristics were indicative of a Phytophthora species. The ITS region (internal transcribed spacer) of rDNA was amplified using primers ITS4/ITS6 (3) and sequenced. BLASTn analysis (1) of the 800 bp obtained showed a 100% homology with Phytophthora citrophthora (R. & E. Sm.) Leonian. The nucleotide sequence has been assigned GenBank Accession No. DQ384611. For pathogenicity tests, the inoculum of P. citrophthora was prepared by growing the pathogen on autoclaved wheat and hemp kernels (2:1) at 25°C for 20 days. Healthy plants of P. barbatus cv. Nano Rondo, 6 months old, were grown in 3-liter pots (one plant per pot) using a steam disinfested substrate (peat/pomix/pine bark/clay 5:2:2:1) in which 200 g of kernels per liter of substrate were mixed. Noninoculated plants served as control treatments. Three replicates were used. Plants were maintained at 15 to 20°C in a glasshouse. The first symptoms, similar to those observed in the gardens, developed 21 days after inoculation, and P. citrophthora was consistently reisolated from infected plants. Noninoculated plants remained healthy. The pathogenicity test was carried out twice with similar results. A nonspecified root and crown rot of Penstemon spp. has been reported in the United States. (2). To our knowledge, this is the first report of P. citrophthora on P. barbatus in Italy as well as in Europe. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997 (2) F. E. Brooks and D. M. Ferrin. Plant Dis. 79:212, 1995. (3) D. E. L. Cooke and J. M. Duncan. Mycol. Res. 101:667, 1997. (4) H. Masago et al. Phytopathology 67:425, 1977.


Plant Disease ◽  
2003 ◽  
Vol 87 (7) ◽  
pp. 875-875 ◽  
Author(s):  
P. Titone ◽  
M. Mocioni ◽  
A. Garibaldi ◽  
M. L. Gullino

During January 2002, Agrostis stolonifera and Poa annua turfgrasses on a golf course in Avigliana (northern Italy) exhibited 10- to 45-cm-diameter circular patches when the snow melted from the greens, tees, and fairways. Many patches coalesced to form large areas of strawcolored blighted turfgrass. At the patch margin, infected plants were covered with white-to-gray mycelium. Plants within patches were matted and appeared slimy with mycelium and sclerotia that were light pink, irregularly shaped, and less than 5 mm in diameter. Isolation from infected leaves on potato dextrose agar, supplemented with 100 mg/l of streptomycin sulfate, consistently yielded a fungus with mycelial, sclerotia, and cultural characteristics of Typhula incarnata (1). Pathogenicity tests were performed by spraying a suspension of mycelium and sclerotia, prepared by chopping mycelium and sclerotia produced in potato dextrose broth, onto 8-week-old A. stolonifera plants grown in plastic trays (45 × 30 cm). Trays were maintained at 0°C for 8 weeks in the dark. Blight symptoms developed on inoculated plants after 6 weeks. Non-inoculated plants remained healthy. The pathogen was reisolated from inoculated plants, and the pathogenicity test was repeated once. Typhula blight incited by T. incarnata was reported in Scandinavian countries and in several European countries including Holland, Germany, Austria, and Switzerland (1). To our knowledge, this is the first report of Typhula blight on turfgrass in Italy. Reference: (1) J. D. Smith et al. 1989. Fungal Diseases of Amenity Turf Grasses. E & FN Spong Ltd, London.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1119-1119 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
P. Pensa ◽  
A. Poli ◽  
M. L. Gullino

Origanum vulgare L., common name oregano, family Labiatae, is grown for its aromatic and medicinal properties and as ornamental. In the fall of 2012, a blight was observed in a farm located near Albenga (northern Italy) on 6% of 30,000 50-day-old plants, grown in trays in a peat/perlite mix. Semicircular, water soaked lesions appeared on leaves and stems, starting from the basal ones. As the disease progressed, blighted leaves turned brown, withered, clung to the shoots, and matted on the surrounding foliage. Eventually, infected plants died. Leaf and stem fragments taken from the margin of the diseased tissues belonging to 10 plants were disinfected for 10 s in 1% NaOCl, rinsed with sterile water, and plated on potato dextrose agar (PDA). A fungus with the morphological characters of Rhizoctonia solani was consistently recovered. Three isolates of R. solani obtained from affected plants were successfully anastomosed with R. solani isolate AG 1 (ATCC 58946). Three pairings were made for each tester strain. The hyphal diameter at the point of anastomosis was reduced, the anastomosis point was obvious, and death of adjacent cells was observed. Results were consistent with other reports on anastomosis reactions (2). Isolates from oregano were paired with R. solani isolates AG 2, 3, 4, 6, 7, or 11 and examined microscopically. Anastomosis was not observed in any of the pairings. Tests were conducted twice. Mycelium of 10-day-old isolates from oregano appeared reddish brown, coarse, and radiate. Numerous dark brown sclerotia, 0.3 to 1.0 mm diameter (average 0.7) developed within 10 days after transfer of mycelia to PDA in 90 mm diameter petri dishes at 21 to 24°C. The descriptions of mycelium and sclerotia were typical for subgroup IB Type 1 (4). The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS1/ITS4 and sequenced. BLASTn analysis (1) of the 538 bp showed a 99% homology with the sequence of R. solani FJ746937, confirming the morphological identification of the species. The nucleotide sequence has been assigned the GenBank Accession KC493638. For pathogenicity tests, one of the isolates assigned to the anastomosis group AG-1-IB was tested by placing 9 mm diameter mycelial disks removed from PDA 10-day-old cultures of the fungus on leaves of 90-day-old oregano plants (n = 35). Thirty-five plants inoculated with non-inoculated PDA disks served as controls. Plants were covered with plastic bags and maintained in a growth chamber at 25 ± 1°C with 12 h light/dark. The first symptoms, similar to those observed in the farm, developed 3 days after inoculation. Nine days after the artificial inoculation, 50% of plants were dead. About 10 colonies of R. solani were reisolated from infected leaves of inoculated plants. Control plants remained healthy. The pathogenicity test was carried out twice with similar results. Symptoms caused by R. solani have been recently observed on O. vulgare in Greece (3). This is, to our knowledge, the first report of blight of O. vulgare caused by R. solani in Italy. References: (1) S. F. Altschul et al. Nucleic Acids Res., 25:3389, 1997. (2) D. E. Carling. Grouping in Rhizoctonia solani by hyphal anastomosis reactions. In: Rhizoctonia Species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease control. Kluwer Academic Publishers, The Netherlands, pp. 37-47, 1996. (3) C. D. Holevas et al. Benaki Phytopathol. Inst., Kiphissia, Athens, 19:1-96, 2000. (4) R. T. Sherwood. Phytopathology 59:1924, 1969.


Plant Disease ◽  
1999 ◽  
Vol 83 (12) ◽  
pp. 1177-1177 ◽  
Author(s):  
S. T. Koike

Chervil (Anthriscus cerefolium) is a culinary herb grown commercially in California. In 1999, chervil plantings in shade houses in coastal California exhibited symptoms of a previously undescribed disease. Tan to gray lesions, surrounded by pinkish tissue, developed on crowns and lower sections of stems. Affected stems wilted, and plants eventually collapsed and rotted. More than 50% of the plants in the early spring planting were diseased. White mycelium and large, irregular, black sclerotia (3 to 6 mm diameter) were observed on infected stems and crowns. Isolations from symptomatic stems, mycelium, and sclerotia produced colonies of Sclerotinia sclerotiorum. Following previously described methods (2), pathogenicity was confirmed by culturing isolates on potato dextrose agar and allowing the fungus to colonize sterilized toothpicks placed on the surface of the agar. The pointed toothpick tips were inserted ≈3 mm deep in stems of potted chervil. Sterile toothpicks were inserted in control chervil plants. All plants were incubated in a mist chamber for 48 h and then kept in a greenhouse. Two other hosts of S. sclerotiorum, cauliflower (Brassica oleracea var. botrytis cv. White Rock) and celery (Apium graveolens cv. Conquistador)were inoculated in the same way. After 7 to 10 days, symptoms and mycelium similar to those originally observed developed on inoculated chervil plants, and S. sclerotiorum was reisolated. Plants left for 14 or more days supported sclerotia. Chervil inoculated with sterile, uncolonized toothpicks did not develop symptoms. Results were similar for cauliflower and celery plants. Pathogenicity tests were repeated, and the results were similar. A separate set of chervil was inoculated by placing sclerotia at the base of plants; these plants also developed disease but at a much lower incidence (<50%). This is the first report of Anthriscus cerefolium as a host of S. sclerotiorum. The related plant cow parsley (A. sylvestris) has been reported as a host of S. sclerotiorum in England (1). References: (1) M. J. Hims. Plant Pathol. 28:197, 1979. (2) S. T. Koike. Plant Dis. 81:1334, 1997.


Plant Disease ◽  
2001 ◽  
Vol 85 (11) ◽  
pp. 1207-1207
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
G. Gilardi ◽  
M. L. Gullino

Gazania sp. hybrid is produced in pots in the Albenga Region of northern Italy for export to central and northern Europe. During fall 2000 to spring 2001, sudden wilt was observed in commercial plantings of this ornamental. Initial symptoms included stem necrosis at the soil level and yellowing and tan discoloration of leaves. As stem necrosis progressed, infected plants wilted and died. Wilt followed by soft rot occurred within a few days on young plants after the first leaf symptoms. Necrotic tissues became covered with white mycelia that produced dark, spherical (2 to 6 mm diameter) sclerotia. Sclerotinia sclerotiorum was consistently recovered from infected stem pieces of Gazania disinfested for 1 min in 1% NaOCl, plated on potato dextrose agar amended with streptomycin sulfate at 100 mg/liter. Pathogenicity of three fungal isolates was confirmed by inoculating 45- to 60-day-old plants grown in containers (14 cm diameter). Inoculum that consisted of wheat kernels infested with mycelium and sclerotia of each isolate was placed on the soil surface around the base of each plant. Noninoculated plants served as controls. All plants were maintained outdoors where temperatures ranged between 8 and 15°C. Inoculated plants developed symptoms of leaf yellowing, followed by wilt, within 7 to 10 days, while control plants remained symptomless. White mycelia and sclerotia developed on infected tissues, and S. sclerotiorum was reisolated from inoculated plants. To our knowledge, this is the first report of wilt of Gazania sp. hybrid caused by S. sclerotiorum in Italy. A crown rot of Gazania caused by S. sclerotiorum has been reported from California in the United States(1). Reference: (1) V. M. Muir and A. H. McCain. Calif. Plant Pathol. 16:1, 1973.


Plant Disease ◽  
1997 ◽  
Vol 81 (9) ◽  
pp. 1093-1093 ◽  
Author(s):  
K. F. Chang ◽  
R. J. Howard ◽  
R. G. Gaudiel ◽  
S. F. Hwang

Purple coneflower (Echinacea purpurea (L.) Moench; Asteraceae), a perennial herb originating from North America, is used as a garden ornamental and is grown commercially for use in medicinal preparations as an immunostimulant. In October 1996, a previously undescribed stem rot disease was observed in a research plot of 6-month-old echinacea plants at Brooks. Seedlings had been raised in small rockwool cubes (2 × 2 × 5 cm3) in a greenhouse, then transplanted into the field in early June. By late August, dead and dying plants were observed throughout the stand. They had dark brown to black stem lesions above and at the soil level and dead leaves with bleached petiole lesions that extended ca. 15 cm above the axil. Diseased stems and petioles often disintegrated, leaving only fibrous tissues intact. Roots were rotted and black. Superficial white mycelium developed over the basal part of affected stems. Black, oblong to irregular-shaped sclerotia, 5.1 to 17.6 mm in size, formed externally on the crown areas after plant death. Sclerotinia sclerotiorum (Lib.) de Bary (1) was isolated from the diseased plants. Five isolates were selected to fulfill Koch's postulates with 3-month-old echinacea seedlings grown in 12-cm pots of soilless mix. Sclerotia from wilted, field-grown echinacea plants were transferred onto potato dextrose agar medium for 2 days at 20°C. Agar disks were cut with a 1-cm cork borer and two plugs containing sclerotial and mycelial tissues were inserted into the soilless mix 0.5 cm deep and 0.5 cm from the opposite sides of stems of test plants. Inoculated plants were enclosed in transparent plastic bags for 5 days and incubated in a growth chamber at 15/18°C (night/day) with a 12-h photoperiod. One to four lower leaves per plant wilted within 1 week after inoculation and aerial mycelia appeared on the petioles. Infected leaves quickly withered, dried, and dropped off the plant after the bags were removed. Plants often died 3 weeks after inoculation and S. sclerotiorum was reisolated from infected crown tissues. This disease was also found on 3-year-old plants of E. pallida (Nutt.) Nutt. var. angustifolia (DC.) Cronq. in Vernon, British Columbia, Canada, in May 1997. This is the first report of sclerotinia stem rot on Echinacea spp., a disease that could have a significant impact on the longevity and productivity of this crop in the field and greenhouse. Reference: (1) L. H. Purdy. Phytopathology 69:875, 1979.


Plant Disease ◽  
2009 ◽  
Vol 93 (3) ◽  
pp. 323-323 ◽  
Author(s):  
F. T. Arroyo ◽  
Y. Llergo ◽  
A. Aguado ◽  
F. Romero

In the spring of 2007, wilted and dead strawberry plants (Fragaria × ananassa Duch. cvs. Camarosa and Ventana) were observed in a soilless culture system in Huelva, southwestern Spain. Approximately 8% of the plants in the field died. Isolations from necrotic crowns and roots and necrotic flowers were made on potato dextrose agar after disinfestation in 0.6% NaOCl for 30 s. Colonies with light purple mycelia and beige or orange reverse colony colors developed after 9 days of incubation at 25°C. Colonies produced abundant microconidia, macroconidia, and chlamydospores. Microconidia were hyaline and oval-ellipsoid to cylindrical (5.9 to 9.2 × 2.1 to 3.4 μm). Macroconidia were 3 to 5 septate and fusoid-subulate with a pedicellate base (28.8 to 37.3 × 3.2 to 4.3 μm). Morphology and growth matched descriptions of Fusarium oxysporum Schlechtend emend. Snyder & Hansen (2). A PCR assay for amplification of r-DNA using primers PFO2 and PFO3 established the identity of the isolate as F. oxysporum (1). To confirm the pathogenicity of the fungus, roots of 30-day-old strawberry cvs. Camarosa and Ventana (20 plants each) were inoculated by dipping the roots into a conidial suspension (107 conidia per ml) for 15 min. The inoculated plants were transplanted into plastic pots containing sterilized peat and maintained at 25°C and 100% relative humidity in a growth chamber with a daily 12-h photoperiod of fluorescent light. The pathogenicity test was conducted twice. Within 30 days, all inoculated plants developed wilt symptoms similar to that observed in the field and eventually 75% of the plants died. No symptoms were observed on plants dipped in distilled water. The fungus was successfully reisolated from crowns, roots, and necrotic flowers, fulfilling Koch's postulates. To our knowledge, this is the first report of the occurrence of Fusarium wilt caused by F. oxysporum on strawberry plants in Spain. References: (1) V. Edel et al. Mycol. Res. 104:518, 2000. (2) W. C. Snyder and H. N. Hansen. Am. J. Bot. 27:64, 1940.


Plant Disease ◽  
2010 ◽  
Vol 94 (4) ◽  
pp. 488-488 ◽  
Author(s):  
K. Srinivasan ◽  
S. Visalakchi

During the spring of 2009, symptoms including leaf yellowing and wilting, root rot, and death of plants were noted in sunflower (Helianthus annuus L.) crops in Dharmapuri District, Tamilnadu, India. In some fields, approximately 30% of the plants were affected. The disease began when plants were approximately 10 weeks old and occurred on scattered or adjacent plants. The presence of white mycelium was observed on necrotic crowns. Symptomatic tissue was surface disinfested in 70% alcohol for 30 s and 0.5% sodium hypochlorite for 1 min and plated onto potato dextrose agar (PDA) (1). One isolate (coded SV001) had near right-angle branching with basal constriction and adjacent septa and sclerotia typical of Rhizoctonia spp. (2). Cream-colored colonies produced irregular, light brown sclerotia that were 3.0 to 7.3 mm (average 3.8 mm) in diameter. Hyphae were 6.8 to 7.0 μm (average 6.9 μm) wide and multinucleate (8 to 15 nuclei per cell). On the basis of hyphal anastomosis with several known AG testers, the fungus was characterized as Rhizoctonia solani Kühn AG-IV (3). One culture was deposited at the Madras University Botany Laboratory, Center for Advanced Studies in Botany, University of Madras, Chennai, India. In a pathogenicity test, R. solani SV001 was grown on PDA for 5 days at 24°C in the dark. Five-millimeter-diameter disks were placed at the base of sunflower plants (cv. Mordan). Four sunflower plants in each of three pots were inoculated; noninoculated plants served as controls. Plants were placed in a glasshouse maintained at 25 to 27°C. Inoculated plants developed yellow foliage and crown rot and root rot symptoms after 7 to 12 days and died in 17 to 20 days. No symptoms were observed on noninoculated plants. The pathogen was reisolated from fragments of necrotic crown tissue of inoculated plants. To our knowledge, this is the first report of R. solani AG-IV causing a disease of sunflower plants in India. References: (1). R. C. Fenille et al. Plant Pathol. 54:325, 2005. (2). J. R. Parmeter et al. Phytopathology 59:1270, 1969. (3) B. Sneh et al. Identification of Rhizoctonia Species. The American Phytopathological Society, St Paul, MN, 1991.


Sign in / Sign up

Export Citation Format

Share Document