scholarly journals First Report of Macrophomina phaseolina Causing Pre-harvest Cassava Root Rot in Benin and Nigeria

Plant Disease ◽  
1998 ◽  
Vol 82 (12) ◽  
pp. 1402-1402 ◽  
Author(s):  
W. Msikita ◽  
B. James ◽  
H. T. Wilkinson ◽  
J. H. Juba

In diagnostic surveys conducted in parts of Benin and Nigeria to determine the incidence of pre-harvest cassava root and stem rot during the dry season, Macrophomina phaseolina (Tassi) Goidanich constituted 14.2 and 18.7% of the total fungi (n = 201) associated with cassava root and stem rot from Benin and Nigeria (1). Pathogenicity of M. phaseolina on cassava was tested with cv. Agric. Inocula for pathogenicity tests were prepared by incubating 5-mm-diameter mycelial plugs for each of five isolates (Mp 1 to Mp 5, all collected from Benin) with 500 ml of autoclaved, sterilized, dehusked rice seed for 14 days at 30°C. Five 30-cm-long stem portions per isolate were cut from healthy cassava, surface disinfested in hot water (52°C, 5 min), and planted into 1-liter pots containing autoclaved, sterilized sand mixed with 10 ml of air-dried inoculum. Five plants per isolate similarly treated but not inoculated served as controls. Plants were watered once a week, and maintained in a greenhouse under natural light at 28 to 30°C. Lower leaves of inoculated plants gradually wilted, usually preceded by chlorosis, and brown to black lesions formed on the lower stem portions of some roots. Control plants remained asymptomatic. Plant height and percentage of leaf wilt (determined by counting the number of leaves wilted per plant and dividing by the total number of leaves per plant) were measured on a weekly basis for 8 weeks for each of the control and inoculated plants. At the end of 8 weeks, lesion length on the lower stem was measured. There were significant differences (P < 0.05) in length of the lesions and percentage of leaf wilt induced by the different isolates of M. phaseolina. Isolate Mp 1 induced the longest lesion (7.2 cm), followed by Mp 4 (4.1 cm), Mp 3 and Mp 5 (3.8 cm each), and Mp 2 (1.2 cm). Mp 4 induced the highest percentage of wilted leaves (53%), followed by Mp 1, Mp 3, and Mp 5 (30%), and Mp 2 (10%). All five M. phaseolina isolates (except Mp 3) reduced plant height, compared with control treatments. M. phaseolina was isolated from all infected plants, and the identification was independently confirmed by the International Mycological Institute, Surrey, UK. This is the first report of M. phaseolina causing pre-harvest cassava root rot in Benin and Nigeria. Reference: (1) W. Msikita et. al. Plant Dis. 81:1332, 1997.

Plant Disease ◽  
1997 ◽  
Vol 81 (11) ◽  
pp. 1332-1332 ◽  
Author(s):  
W. Msikita ◽  
J. S. Yaninek ◽  
M. Ahounou ◽  
H. Baimey ◽  
R. Fagbemissi

During part of the dry season in 1996 (November to December), surveys were made for incidence of root and stem rot in 99 fields of cassava (Manihot esculenta Crantz) randomly selected between latitudes 6°36′N and 7°49′N in Benin (79 fields) and Nigeria (20 fields). Root rot was observed in 65 fields in Benin and 15 fields in Nigeria. Disease incidence ranged from 0 to 54%. A total of 201 samples of wilted and/or dead plants were collected for laboratory analysis. Infected root and stem portions (0.5 to 1 cm) were cut out, surface disinfested (10 min) in 10% bleach (0.6% sodium hypochlorite), rinsed in sterilized distilled water, and cultured on potato dextrose agar acidified to pH 4.5 with 0.4% (vol/vol) lactic acid. Cultures were incubated at 25°C, under 12-h day length provided by cool-white fluorescent lamps. After 1 week, mycelia, conidiophores, and conidia were observed at ×30 to ×40 magnification under a compound microscope. Out of the 169 symptomatic samples collected from Benin, nine fungal genera were isolated: Aspergillus spp. (1% of fungi observed), Botryodiplodia theobromae Pat (7.7%), Fusarium spp. (11.8%), Macrophomina phaseolina (Tassi) Goidanich (14.2%), Nattrassia mangiferae (Syd. & P. Syd.) B. Sutton & Dyko (56.2%), Penicillium spp. (0.6%), Pythium spp. (2.9%), Rhizopus spp. (1.7%), and Trichoderma spp. (2.4%). One percent of the fungi isolated did not sporulate in culture and were not identified. Out of the 32 samples collected from Nigeria, four fungal genera were identified: N. mangiferae (40.6%), B. theobromae (28.1%), M. phaseolina (18.7%), and Fusarium spp. (12.5%). Since N. mangiferae was isolated with the highest frequency, its pathogenicity was tested on cassava (cultivars Agric, Ben 86052, Dessa 88, Tchukunochi, and TMS 30572). Two weeks prior to the experiment, inocula for pathogenicity tests were prepared by incubating 5-mm-diameter mycelial plugs of N. mangiferae with 500 ml of autoclaved rice seed for 10 days at 25°C, followed by air drying in a laminar flow hood for 2 days. Five 30-cm-long stem portions were cut from healthy plants of each cassava cultivar, surface disinfested in hot water (52°C, 5 min), and transplanted into sterilized (autoclaved, 1 h) sand in 1-liter pots to which 10 ml of the N. mangiferae-colonized rice inoculum had been added. There were five control stems for each cultivar, similarly treated, but not inoculated. Plants were maintained in a greenhouse under natural light at 28 to 30°C. Thirty days after planting, plant height, lesion length, and number of shoots and roots were recorded. For all five cultivars, N. mangiferae significantly (P < 0.05) reduced plant height and number of shoots and roots, compared with control plants. Lesions (3 to 15 cm long) formed on the lower stem portions of all inoculated plants, resulting in variable degrees of wilting of the infected plants. Two of the cultivars (Agric and Ben 86052) died 3 weeks after planting. Control plants remained asymptomatic. N. mangiferae was consistently reisolated from infected plants, and the identification was independently confirmed by the International Mycological Institute, Surrey, UK. Scytalidium sp., a synamorphic state of N. mangiferae (2), was reported to cause up to 85% cassava root yield loss in South America (1). This is the first report of N. mangiferae causing cassava root and stem rot in West Africa. References: (1) Anonymous. Annu. Rep. Cassava Prog., CIAT Working Doc. No. 116:97, 1992. (2) B. C. Sutton and B. J. Dyko. Mycol. Res. 93:466, 1989.


Plant Disease ◽  
2020 ◽  
Vol 104 (11) ◽  
pp. 3081-3081
Author(s):  
Lin Cai ◽  
Yongzhi Zhang ◽  
Hancheng Wang ◽  
Chen Xu ◽  
Xianchao Sun

Plant Disease ◽  
2002 ◽  
Vol 86 (6) ◽  
pp. 697-697
Author(s):  
M. L. Molinero-Ruiz ◽  
J. M. Melero-Vara

In 2001, sunflower (Helianthus annuus L.) plants with symptoms of stem and root rot and wilt were observed in Soria, Spain. Light brown, water-soaked lesions developed on the collar of infected plants and extended along the stem, affecting the pith and causing early and sudden wilt. White mycelium and sclerotia (0.5 to 2 mm long) formed in the pith of stems. The sclerotia were disinfested in NaClO (10% vol/vol) for 1 min, transferred to potato dextrose agar (PDA), and incubated at 20°C. The fungus consistently obtained was identified as Sclerotinia minor Jagger (1). Pathogenicity was confirmed in a greenhouse experiment (15 to 25°C, 13 h light). Seven-week-old plants of six genotypes of sunflower (‘Peredovik’, HA89, HA821, HA61, RHA274, and HA337) were inoculated by placing one PDA disk with active mycelial growth adjacent to each basal stem just below the soil line and covering it with peat/sand/silt (2:2:1, vol/vol). Six plants of each genotype were inoculated without wounding, and another six were inoculated immediately after stem base wounding with a scalpel; six wounded and uninoculated plants were used as controls. First symptoms (wilting) appeared 4 days after inoculation in all genotypes. Two weeks after inoculation, the percentage of dead plants ranged from 33 to 92% (depending on cultivar), white mycelium was observed at the base of affected plants, and sclerotia were present in the pith of diseased plants. There was no effect of plant wounding on disease incidence or severity, and the fungus was reisolated from inoculated plants. To our knowledge, this is the first report of S. minor in Spain. Reference: (1) L. M. Kohn. Mycotaxon IX 2:365, 1979.


Plant Disease ◽  
2021 ◽  
Author(s):  
Kelley Rose Paugh ◽  
Johanna Del Castillo Múnera ◽  
Cassandra L Swett

Industrial hemp (Cannabis sativa) is a newly legal crop in California that is grown for cannabidiol oil, fiber and seed. In August 2019, whole plant decline and root rot were observed affecting <5% of plants in two industrial fields in Fresno County, CA. Symptoms included chlorotic, collapsed foliage, stem vascular discoloration, and root rot with abundant mycelial growth. Stem and root segments (1-2 cm) from three to five diseased plants were agitated in 0.1% tween-20 and soaked in 70% ethanol for 30 s and 1% NaOCl for 2 min. After incubating for 5 to 7 days on 1:10 potato dextrose agar (PDA) amended with tetracycline, Fusarium selective medium (FSM), and PARP (pimaricin + ampicillin + rifampicin + pentachloronitrobenzene [PCNB] agar) medium, white to pale cream aerial mycelium emerged from tissue of all plants on PDA and FSM but not PARP. Isolates cultured on 0.1% potassium chloride agar formed heads of microconidia on long monophialides consistent with the Fusarium solani species complex (FSSC) (Leslie and Summerell 2008). To obtain pure cultures of two isolates (CS529 and CS530), a single-hyphal tip was excised and grown on PDA. DNA was extracted from actively growing mycelium (PrepMan Ultra kit). The translation elongation factor gene (EF-1α) was amplified via PCR using EF1/EF2 primers (O’Donnell et al. 1998). Sequences of the two isolates were identical and deposited under accession number MW892973 in GenBank. The 599 bp sequence was 99.33% identical to FSSC 3 + 4 (Fusarium falciforme) accessions FD_01443_EF-1a based on FUSARIUM-ID BLAST analysis. To evaluate pathogenicity, stems of hemp plants (cv. ‘Berry Blossom’; n=8 plants per isolate) were wounded by penetrating the epidermis in an area about 0.5-cm square by 1-mm deep and 8-inches above the soil line. A 0.5 cm-diameter plug of 7-day old F. falciforme-colonized PDA was placed against the wound. Inoculation sites were loosely wrapped with parafilm for 2 days. A negative control consisted of a sterile PDA plug (n=3). Treatments were arranged in a completely randomized design in a greenhouse. The experiment was conducted once, due to regulatory restrictions at campus facilities. At 61 days post-inoculation, external stem lesions were significantly larger in diameter (P < 0.05; Tukey’s HSD) in plants inoculated with CS529 (8 ± 1 mm) compared to the control (2 ± 0 mm), and larger but not significant for CS530 (6 ± 1 mm). Internal stem lesions (i.e., rot in stele) were observed in plants inoculated with CS529 (9 ± 3 mm); stem rot was very minor in plants treated with CS530 (1 ± 1 mm) and nonexistent for control plants. No other disease symptoms were observed. F. falciforme was isolated from stems of CS529- and C530-inoculated plants. Sequences of re-isolates matched 100% with accession MW892973. These results suggest that F. falciforme causes rot in hemp in California. These studies specifically confirm stem rot abilities; field observations of root rot indicate root rotting abilities, but further tests are needed for confirmation. This is the first report of F. falciforme causing disease in industrial hemp. FSSC was described as causing foot rot in hemp in Italy (Sorrentino et al. 2019), but these isolates belonged to phylogenetic species 5 (F. solani) not F. falciforme. In addition, F. falciforme was reported as causing root rot in hydroponically grown cannabis (Punja and Rodriguez 2018). These studies provide the foundation for development of management tools for hemp disease.


Plant Disease ◽  
2018 ◽  
Vol 102 (11) ◽  
pp. 2380 ◽  
Author(s):  
I. Nishad ◽  
A. K. Srivastava ◽  
A. Saroj ◽  
B. K. Babu ◽  
A. Samad

Plant Disease ◽  
2020 ◽  
Vol 104 (12) ◽  
pp. 3261-3261
Author(s):  
X.-D. Sun ◽  
X.-L. Cai ◽  
Q.-Q. Pang ◽  
M. Zhou ◽  
W. Zhang ◽  
...  

Author(s):  
P. Holliday

Abstract A description is provided for Macrophomina phaseolina. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Plurivorous; Young (1949) lists 284 hosts. DISEASES: Charcoal rot, ashy stem blight. The most frequent symptoms are a dry or wet, dark rot of the lower stem. In maize and sorghum this usually occurs near maturity; the cortex is destroyed, lodging may take place and numerous sclerotia are found on the vascular fibres (16: 310; 24: 96; 25: 109). Leaf lesions also occur on jute and legumes (4: 349; 23: 107; 26: 139). Stem rot and canker can be severe in potato, cotton and groundnut (15: 148; 24: 202, 228, 503; 34: 541; 47, 378). In conifers and many crops the fungus causes damping-off (13: 344; 17: 115; 21: 275; 26: 139; 35: 42; 38: 550; 40: 193; 45, 2846; 48, 2030). GEOGRAPHICAL DISTRIBUTION: Widespread in the tropics and subtropics. TRANSMISSION: Through plant debris in soil. Seed-borne spread may be important in some crops. Both sclerotia and pycnidia can occur on the seed surface and under the seed coat (18: 82; 27: 71). Sclerotia are probably the main source of infection which also occurs through conidia (26: 139). Sclerotia showed no loss in viability after 8 months and the fungus was recovered from cotton stubble after 24-42 weeks (25: 56; 35: 607).


Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 591-591 ◽  
Author(s):  
K. L. Schroeder ◽  
T. C. Paulitz

Rhizoctonia root rot occurs commonly on canola (Brassica napus L.) in Washington State. Recently, isolates of an additional pathogen were found to be involved in this disease complex. Isolates of an AG-I-like Ceratobasidium sp. were collected from roots and root zone soil in central Washington near Ritzville. Identity of selected isolates was verified by sequencing the internal transcribed spacer (ITS) region of the rDNA (GenBank Accession Nos. JQ247570, JQ247571, and JQ247572), with a 90 to 93% identity to AG-I. All isolates also amplified with AG-I-like specific primers (1). Six isolates were included in pathogenicity assays conducted in the greenhouse. There were five replicates of three plants for each treatment and the experiment was conducted twice. Pasteurized soil was infested with ground oat inoculum (1%) and placed into containers (3.8 × 21 cm). Infested soils were seeded with canola, chickpea (Cicer arietinum L.), lentil (Lens culinaris Medik.), pea (Pisum sativum L.), barley (Hordeum vulgare L.), or wheat (Triticum aestivum L.). After 3 weeks of incubation at 15°C, the plants were destructively harvested. The emergence of canola was consistently reduced in soil infested with a Ceratobasidium sp., with reductions of 0 to 23% (average 11%). There was no postemergence damping-off, a symptom commonly associated with AG-2-1 (2). Plant height and top dry weights were significantly reduced for canola seeded into infested soil. Heights of plants growing in infested soil was reduced by 25 to 53% (average 42%) and top dry weight was reduced by 37 to 81% (average 61%) compared with the noninfested control. The legume hosts tested in this study were also affected by this Ceratobasidium sp., but to a lesser extent. Compared with the noninfested controls, there was evidence of preemergence damping-off in chickpea (0 to 27%, average 13%) and pea plants were consistently stunted (5 to 23%, average 12%). Chickpea and pea plants grown in infested soil also had reduced top dry weights of 9 to 28% (average 17%) and 13 to 35% (average 21%), respectively. The roots of all infected hosts had a characteristic brown discoloration with tapered, rotted root tips (spear tips). There was no reduction in emergence or plant height of wheat and barley; there was inconsistent reduction in dry weight of these plants. To our knowledge, this is the first report of a Ceratobasidium sp. causing disease on canola in Washington State. References: (1) P. A. Okubara et al. Phytopathology 98:837, 2008. (2) T. C. Paulitz et al. Plant Dis. 90:829, 2006.


2018 ◽  
Vol 101 (2) ◽  
pp. 429-429 ◽  
Author(s):  
Najeeb Ullah ◽  
Khalid Pervaiz Akhtar ◽  
Muhammad Jawad Asghar ◽  
Ghulam Abbas

Sign in / Sign up

Export Citation Format

Share Document