scholarly journals First Report of a Ceratobasidium sp. Causing Root Rot on Canola in Washington State

Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 591-591 ◽  
Author(s):  
K. L. Schroeder ◽  
T. C. Paulitz

Rhizoctonia root rot occurs commonly on canola (Brassica napus L.) in Washington State. Recently, isolates of an additional pathogen were found to be involved in this disease complex. Isolates of an AG-I-like Ceratobasidium sp. were collected from roots and root zone soil in central Washington near Ritzville. Identity of selected isolates was verified by sequencing the internal transcribed spacer (ITS) region of the rDNA (GenBank Accession Nos. JQ247570, JQ247571, and JQ247572), with a 90 to 93% identity to AG-I. All isolates also amplified with AG-I-like specific primers (1). Six isolates were included in pathogenicity assays conducted in the greenhouse. There were five replicates of three plants for each treatment and the experiment was conducted twice. Pasteurized soil was infested with ground oat inoculum (1%) and placed into containers (3.8 × 21 cm). Infested soils were seeded with canola, chickpea (Cicer arietinum L.), lentil (Lens culinaris Medik.), pea (Pisum sativum L.), barley (Hordeum vulgare L.), or wheat (Triticum aestivum L.). After 3 weeks of incubation at 15°C, the plants were destructively harvested. The emergence of canola was consistently reduced in soil infested with a Ceratobasidium sp., with reductions of 0 to 23% (average 11%). There was no postemergence damping-off, a symptom commonly associated with AG-2-1 (2). Plant height and top dry weights were significantly reduced for canola seeded into infested soil. Heights of plants growing in infested soil was reduced by 25 to 53% (average 42%) and top dry weight was reduced by 37 to 81% (average 61%) compared with the noninfested control. The legume hosts tested in this study were also affected by this Ceratobasidium sp., but to a lesser extent. Compared with the noninfested controls, there was evidence of preemergence damping-off in chickpea (0 to 27%, average 13%) and pea plants were consistently stunted (5 to 23%, average 12%). Chickpea and pea plants grown in infested soil also had reduced top dry weights of 9 to 28% (average 17%) and 13 to 35% (average 21%), respectively. The roots of all infected hosts had a characteristic brown discoloration with tapered, rotted root tips (spear tips). There was no reduction in emergence or plant height of wheat and barley; there was inconsistent reduction in dry weight of these plants. To our knowledge, this is the first report of a Ceratobasidium sp. causing disease on canola in Washington State. References: (1) P. A. Okubara et al. Phytopathology 98:837, 2008. (2) T. C. Paulitz et al. Plant Dis. 90:829, 2006.

Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 584-584 ◽  
Author(s):  
K. L. Schroeder ◽  
T. C. Paulitz

Canola (Brassica napus L) production has gained renewed interest in Washington State over the past few years, primarily for the purpose of producing biofuel. Plants were observed to be showing symptoms of Rhizoctonia root rot and postemergence damping-off. In many cases, this was due to Rhizoctonia solani AG-2-1, which was previously documented (4). However, additional plants were occasionally observed that were stunted and had reduced vigor, but lacked the distinctive severe stem damage and postemergence damping-off, which are both symptoms of infection with R. solani AG-2-1. Isolates of R. solani AG-10 were collected from symptomatic plants or baited from root zone soil at various dryland production locations in eastern Washington, including sites near Colfax, Pullman, and Walla Walla. Initial identification was determined by quantitative (Q)-PCR using R. solani AG-10 specific primers (3). The identity was verified by sequencing random isolates identified by Q-PCR (GenBank Accessions Nos. JQ068147, JQ068148 and JQ068149). All sequenced isolates had 99% identity to previously reported isolates of R. solani AG-10. Six isolates were chosen to test pathogenicity on canola plants in the greenhouse. Sterilized oats were inoculated with each of six isolates of R. solani AG-10 and grown for 4 weeks. The soil was infested with ground oat inoculum (1% wt/wt) and spring canola cv. Sunrise was seeded into 3.8 × 21-cm containers. After 3 weeks of incubation at 15°C, plants were harvested and assessed. Emergence was reduced in the infested soil with 73 to 93% (average 81%) emergence compared with 100% emergence in the noninfested soil. There was no evidence of postemergence damping-off. However, all six isolates of R. solani AG-10 significantly reduced the plant height and top dry weights compared with the noninfested controls. The plant height in infested soil was 28 to 42% (average 34%) shorter and top dry weights were 37 to 70% (average 54%) lower than in noninfested soil. Roots of infected plants had a light brown discoloration along with reduced length and fewer lateral roots. Additional host plants were tested, including wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), pea (Pisum sativum L.), chickpea (Cicer arietinum L.), and lentil (Lens culinaris Medik.). There was no significant reduction in plant height or plant dry weight for any of these hosts. R. solani AG-10 was previously found to be weakly virulent on canola and other cruciferous hosts in Australia (1,2). To our knowledge, this is the first report of R. solani AG-10 causing disease on canola in Washington State. Reference: (1) R. K. Khangura et al. Plant Dis. 83:714, 1999. (2) G. C. MacNish et al. Australas. Plant Pathol. 24:252, 1995. (3) P. A. Okubara et al. Phytopathology 98:837, 2008. (4) T. C. Paulitz et al. Plant Dis. 90:829, 2006.


Plant Disease ◽  
2006 ◽  
Vol 90 (6) ◽  
pp. 829-829 ◽  
Author(s):  
T. C. Paulitz ◽  
P. A. Okubara ◽  
W. F. Schillinger

In early September 2003, winter canola (Brassica napus L) cv. Inca was direct seeded into plots previously cropped with spring barley at the Washington State University Dryland Research Station at Lind, WA. Before planting, the plots received 80 mm of water by sprinkler irrigation, and 2 weeks later, volunteer barley was killed with Paraquat contact herbicide. In late September, 3 weeks after planting, canola seedlings exhibited postemergence damping-off and lesions on the hypocotyls, resulting in significant stand reductions. Rhizoctonia solani was isolated from infected hypocotyls using water agar amended with chloramphenicol (100 μg/ml). Cultures on potato dextrose agar produced dark brown colonies with dark brown microsclerotia. Three isolates were grown on autoclaved oat seed for 3 weeks in 1-liter Erlenmeyer flasks at 22°C, and colonized seed was air dried in a laminar flow hood, ground in a coffee grinder, and added to a Thatuna silt loam at 1% (w/w). The infested soil was placed into 4- × 20.5-cm plastic tubes and planted with five canola seeds per tube, five tubes per isolate. In the control treatment, soil was not infested. Plants were grown in a temperature-controlled room in a greenhouse at 16°C, 12-h light/dark. Isolates caused pre- and postemergence damping-off after 1 week, and the surviving seedlings had significantly less plant height and dry weight. Isolates were identified as AG 2-1 by pairing cultures with AG 8, 2-1, and 10 on agar-coated slides (1). Selected isolates were also identified as AG 2-1 by sequencing of the ITS 1 and 2 regions of the rDNA and matching them to sequences in GenBank. On a farm north of Pullman, WA in 2004, R. solani was isolated from soil in spring and winter wheat fields using a toothpick baiting method (2). R. solani was found primarily from sites previously cropped with winter and spring canola. These isolates were identified as AG 2-1 and five isolates were tested in the greenhouse, as described above, on canola (cv. Inca), lentil (Lens culinaris Medik. cv. Merrit), wheat (Triticum aestivum L. cv. Madsen), barley (Hordeum vulgare L. cv. Baronesse), pea (Pisum sativum L. cv. Stirling), and chickpea (Cicer arietinum L. cv. Sierra). Three of five isolates significantly reduced emergence of canola, and all isolates significantly reduced dry weight of canola seedlings and caused lesions on hypocotyls. None of the isolates reduced emergence of the other crops. All isolates reduced the dry weight of pea and three isolates reduced plant height. None of the isolates reduced the dry weight of lentil, chickpea, wheat, or barley. One of the isolates was also tested on Arabidopsis thaliana and found to be pathogenic. R. solani AG 2-1 has been reported as an important pathogen on canola in Canada and Australia, but has not been reported from the Pacific Northwest of the United States. R. solani AG 2-1 is also pathogenic on rapeseed, mustard, and subterranean clover and has been isolated from wheat, sugar beets, and potato (3). Canola is a minor rotation crop in cereal-based cropping systems in eastern Washington (1,600 ha in 2005), but there is increasing interest in this oilseed crop for biodiesel production. However, R. solani AG 2-1 may reduce stands and yield of canola. References: (1) W. C. Kronland and M. E. Stanghellini. Phytopathology 78:820, 1988. (2) T. C. Paulitz and K. L. Schroeder. Plant Dis.89:767, 2005. (3) B. Sneh et al. Identification of Rhizoctonia species. The American Phytopathological Society. St. Paul, MN, 1991.


Plant Disease ◽  
1998 ◽  
Vol 82 (3) ◽  
pp. 294-299 ◽  
Author(s):  
W. Mao ◽  
R. D. Lumsden ◽  
J. A. Lewis ◽  
P. K. Hebbar

Bioassays were conducted in a greenhouse at 18°C to determine the effectiveness of a seed treatment used in combination with biocontrol agents for the reduction of corn damping-off caused by species of Pythium and Fusarium. Corn seeds were infiltrated with tap water, drained, air-dried, and then coated with biomass of an antagonistic fungus, Gliocladium virens isolate Gl-3, or an antagonistic bacterium, Burkholderia cepacia isolates Bc-B or Bc-1, or a combination of Gl-3 with each of the bacterial isolates. A nonsterile field soil was infested with a combination of pathogens: Pythium ultimum, P. arrhenomanes, and Fusarium graminearum at 2 inoculum rates (1× and 4×). Pre-infiltration enhanced (P ≤ 0.05) disease control with most treatments at both inoculum rates. Treatments with biocontrol agents alone or in combination, as well as the fungicide captan, effectively reduced the disease at a pathogen inoculum rate of 1×, resulting in greater (P ≤ 0.05) seedling stands, plant height, and fresh weight, and lower (P ≤ 0.05) root rot severity compared with untreated seeds in infested soil. At a pathogen inoculum rate of 4×, stands were lower (P ≤ 0.01) and root-rot severity was higher (P ≤ 0.01) compared to those at 1× for all treatments. Nevertheless, coating seeds with all biocontrol agents (alone or in combination), except with Bc-1 alone, reduced disease (P ≤ 0.05) compared to untreated seeds in infested soil. At both inoculum rates of 1× and 4×, coating seeds with Gl-3 + Bc-B was more effective (P ≤ 0.05) in disease control than any other treatment, resulting in stands, growth rate (plant height and fresh weight), and root rot severity similar to plants from untreated seeds in noninfested soil. In addition, when the exudate from a 2-h infiltration of corn seed was added to the seeds during seed coating, seedling stand was often lower and root rot severity was often higher than those from infiltrated seeds (P ≤ 0.05). These results indicated that the infiltration process removed certain exudates, including nutrients and/or stimulants (not detected in this study) that might be utilized by pathogens to initiate seed infection. A thin-layer chromatography (TLC) profile of the exudates showed the presence of eight amino acids and three major carbohydrates.


Plant Disease ◽  
1997 ◽  
Vol 81 (5) ◽  
pp. 450-454 ◽  
Author(s):  
W. Mao ◽  
J. A. Lewis ◽  
P. K. Hebbar ◽  
R. D. Lumsden

Bioassays were conducted under greenhouse conditions to test the efficacy of antagonists applied to corn (Zea mays) seed for protection against seed rot and seedling damping-off at 18 and 25°C in a field soil artificially infested with a combination of Pythium ultimum, P. arrhenomanes, and Fusarium graminearum. Biomass of Gliocladium virens isolates Gl-3 or Gl-21, Trichoderma viride isolate Tv-1, or peat-based slurry of Burkholderia cepacia isolates Bc-B, Bc-T, or Bc-1 was coated individually onto corn seeds in one test, and Gl-3 or Bc-B at four inoculum levels was used in another test. Seed treatments with most of the biocontrol agents, as well as with the fungicide captan, significantly (P ≤ 0.05) increased seedling stand, plant height and fresh weight, and decreased root rot severity compared with untreated seeds in pathogen-infested soil. Coating seeds with the biocontrol fungus G. virens isolate Gl-3 was the most effective treatment, resulting in greater (P ≤ 0.05) seedling stand, plant height, and fresh weight, and lower (P ≤ 0.05) severity of root rot than those parameters from seeds treated with captan or other antagonists at both temperatures. The results from the seeds treated with Gl-3 were similar to those of untreated seeds in noninfested soil. In treatments with Bc-1, Bc-T, Bc-B, or Tv-1, incubation temperature affected plant emergence, root rot severity, plant height, and fresh weight (P ≤ 0.01). Conversely, in seeds coated with Gl-3 or Gl-21, these parameters were similar at both temperatures. The minimum number of propagules needed per corn seed to obtain plant emergence comparable to that from captan-treated seeds was between 104 and 105 CFU for Gl-3 and >108 for Bc-B. When propagules of Gl-3 were applied at a rate >106 CFU per seed, seedling emergence was greater (P ≤ 0.05) than that from captan-treated seeds.


Plant Disease ◽  
2007 ◽  
Vol 91 (11) ◽  
pp. 1516-1516 ◽  
Author(s):  
G. H. Yang ◽  
R. L. Conner ◽  
Y. Y. Chen

During July, 2003, damping-off of Swiss chard (Beta vulgaris subsp. cicla L.) was observed in a seedling (approximately 1 month after germination) field (approximately 2 ha) in Yuanmou County in the Cuxiong District of Yunnan, China. More than 80% of the seedlings showed symptoms of the disease. Symptoms on newly emerged plants consisted of wilting, a brown necrosis of the lower taproot, and eventual death of seedlings. Among the 15 isolates of Rhizoctonia spp. isolated from Swiss chard with damping-off symptoms, 12 isolates of Rhizoctonia solani with dark brown sclerotia on potato dextrose agar (PDA) anastomosed with tester isolates of each subgroup AG-4 HG I, AG-4 HG II, and AG-4 HG III, giving a C2 hyphal fusion (1) reaction at a high frequency. The other three binucleate Rhizoctonia spp. (BNR) isolates whose mycelia were white with floccose aerial hyphae on PDA anastomosed freely with two BNR AG-A tester isolates producing a C2 hyphal reaction. The 5.8S rDNA-ITS of a single isolate of R. solani and a single isolate of BNR was sequenced. The sequence of the AG-4 isolate (GenBank Accession No. EF679777) exhibited 99 to 100% homology with isolates of R. solani AG-4, subgroup 4HG I (GenBank Accession No. AY154307). The sequence from the AG-A isolate (GenBank Accession No. EF679778) exhibited 98% homology with BNR AG-A (GenBank Accession Nos. AB000040 and AF354092). Swiss chard (cv. Baijin) seedlings (approximately 5 cm high) were planted in potting soil at a density of one seedling per vinyl pot (8 cm diameter, 9 cm high). Two isolates each of R. solani and BNR were used in pathogenicity testing. Each seedling was inoculated in the root zone with approximately 7 g of artificially infested soil. Control plants were inoculated with autoclaved soil. The experiments were conducted three times, each time with three replicates, in a greenhouse with a photoperiod of 16 h of light and 8 of h dark at 30 and 16°C, respectively. After 7 days, disease severity was measured based on a scale in which 0 = no symptom; 1 = small lesions on seedlings, no blight; 2 = leaves blight, no stem blight; 3 = stem blight; and 4 = plant dead. The two AG-4 and two of AG-A isolates were pathogenic on the Swiss chard seedlings and caused damping-off symptoms with a disease index 1.7 to 4.0, and there were no significant differences (P = 0.05) among them. We reisolated and confirmed the presence of R. solani and BNR AG-A from diseased plants. AG-3 isolates were reported to cause the damping-off of Swiss chard in the United States (2). To our knowledge, this is the first report of damping-off of Swiss chard caused by Rhizoctonia solani AG-4 HG I and BNR AG-A. References: (1) D. E. Carling. Page 37 in: Grouping in Rhizoctonia solani by Hyphal Anastomosis Reaction. Kluwer Academic Publishers, Dordecht, the Netherlands, 1996. (2) S. T. Koike and K. V. Subbarao. Plant Dis. 83:695, 1999.


Plant Disease ◽  
2011 ◽  
Vol 95 (10) ◽  
pp. 1316-1316 ◽  
Author(s):  
M. M. Díaz Arias ◽  
G. P. Munkvold ◽  
L. F. Leandro

Fusarium spp. are widespread soilborne pathogens that cause important soybean diseases such as damping-off, root rot, Fusarium wilt, and sudden death syndrome. At least 12 species of Fusarium, including F. proliferatum, have been associated with soybean roots, but their relative aggressiveness as root rot pathogens is not known and pathogenicity has not been established for all reported species (2). In collaboration with 12 Iowa State University extension specialists, soybean roots were arbitrarily sampled from three fields in each of 98 Iowa counties from 2007 to 2009. Ten plants were collected from each field at V2-V3 and R3-R4 growth stages (2). Typical symptoms of Fusarium root rot (2) were observed. Symptomatic and asymptomatic root pieces were superficially sterilized in 0.5% NaOCl for 2 min, rinsed three times in sterile distilled water, and placed onto a Fusarium selective medium. Fusarium colonies were transferred to carnation leaf agar (CLA) and potato dextrose agar and later identified to species based on cultural and morphological characteristics. Of 1,230 Fusarium isolates identified, 50 were recognized as F. proliferatum based on morphological characteristics (3). F. proliferatum isolates produced abundant, aerial, white mycelium and a violet-to-dark purple pigmentation characteristic of Fusarium section Liseola. On CLA, microconidia were abundant, single celled, oval, and in chains on monophialides and polyphialides (3). Species identity was confirmed for two isolates by sequencing of the elongation factor (EF1-α) gene using the ef1 and ef2 primers (1). Identities of the resulting sequences (~680 bp) were confirmed by BLAST analysis and the FUSARIUM-ID database. Analysis resulted in a 99% match for five accessions of F. proliferatum (e.g., FD01389 and FD01858). To complete Koch's postulates, four F. proliferatum isolates were tested for pathogenicity on soybean in a greenhouse. Soybean seeds of cv. AG2306 were planted in cones (150 ml) in autoclaved soil infested with each isolate; Fusarium inoculum was applied by mixing an infested cornmeal/sand mix with soil prior to planting (4). Noninoculated control plants were grown in autoclaved soil amended with a sterile cornmeal/sand mix. Soil temperature was maintained at 18 ± 1°C by placing cones in water baths. The experiment was a completely randomized design with five replicates (single plant in a cone) per isolate and was repeated three times. Root rot severity (visually scored on a percentage scale), shoot dry weight, and root dry weight were assessed at the V3 soybean growth stage. All F. proliferatum isolates tested were pathogenic. Plants inoculated with these isolates were significantly different from the control plants in root rot severity (P = 0.001) and shoot (P = 0.023) and root (P = 0.013) dry weight. Infected plants showed dark brown lesions in the root system as well as decay of the entire taproot. F. proliferatum was reisolated from symptomatic root tissue of infected plants but not from similar tissues of control plants. To our knowledge, this is the first report of F. proliferatum causing root rot on soybean in the United States. References: (1) D. M. Geiser et al. Eur. J. Plant Pathol. 110:473, 2004. (2) G. L. Hartman et al. Compendium of Soybean Diseases. 4th ed. The American Phytopathologic Society, St. Paul, MN, 1999. (3) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Oxford, UK, 2006. (4) G. P. Munkvold and J. K. O'Mara. Plant Dis. 86:143, 2002.


2009 ◽  
Vol 44 (12) ◽  
pp. 1673-1681 ◽  
Author(s):  
Sebahattin Çürük ◽  
H. Yıldız Dasgan ◽  
Sedat Mansuroğlu ◽  
Şener Kurt ◽  
Meltem Mazmanoğlu ◽  
...  

The objective of this work was to evaluate the effect of grafting (onto Solanum torvum Sw.) on plant growth, yield and fruit quality of the Pala and Faselis eggplant (Solanum melongena L.) cultivars, grown in a soil infested with Verticillium dahliae Kleb. and Meloidogyne incognita, or in noninfested soil. Soil infestation decreased yield, plant height, final above-ground biomass, and also reduced fruit mean weight and shoot dry weight depending on cultivar or grafting. Grafting decreased fruit oxalic acid and the soluble solid contents, and increased mean fruit weight, depending on cultivar and soil infestation. Grafting also reduced the negative effects of the pathogens on disease index, plant height and shoot dry weight. Cultivar Pala was more vigorous than Faselis, and S. torvum was a vigorous rootstock. The combination of a vigorous rootstock with a weak cultivar (Faselis) is more profitable than that of a vigorous rootstock and a vigorous cultivar (Pala). Using S. torvum as a rootstock for cultivar Faselis, grown in soil infested with the pathogens, is most likely to be useful in conventional and low-input sustainable horticulture, since grafting increases protection against the pathogens, and reduces the losses in quality and yield.


Plant Disease ◽  
2006 ◽  
Vol 90 (5) ◽  
pp. 597-602 ◽  
Author(s):  
M. T. Kirkpatrick ◽  
C. S. Rothrock ◽  
J. C. Rupe ◽  
E. E. Gbur

The effect of flooding and Pythium ultimum on soybean, Glycine max, was determined in a series of greenhouse experiments using the cultivars Hutcheson and Archer. Seeds were planted into pasteurized soil either not infested or infested with sand-cornmeal inoculum of P. ultimum and either flooded at emergence for 2 days or at the four leaf node stage (V4) for 5 days. A nonflooded control was included in each experiment. Seeds placed directly into infested soil resulted in little or no stand for Hutcheson regardless of flood treatment, whereas stand was reduced for Archer only in the flooded infested soil treatment. Additional experiments were conducted by placing seed onto a 2- to 5-mm layer of pathogen-free soil on top of the infested soil. Flooding at emergence reduced plant height, growth stage, and top dry weight for Hutcheson and root fresh weight for both cultivars. Greater reductions for Hutcheson in root weight, and top dry weight in P. ultimum-infested soil in the soil layer experiments, also indicated that Hutcheson was more susceptible than Archer. Flooding alone decreased root weights, and infestation with P. ultimum reduced weights further resulting in an additive effect. This also was the case for plant height, growth stage, and top dry weight for Hutcheson for flooding at emergence. Root discoloration was greatly increased for both cultivars in infested soil flooded at emergence. Similar results were found when plants were flooded at V4; however, the effect was not as great as with flooding at emergence. These studies indicate that Pythium damping-off and root rot may account for a portion of the negative response of soybean to flooding. The results also indicate that Archer has some resistance to P. ultimum.


1964 ◽  
Vol 42 (12) ◽  
pp. 1589-1604 ◽  
Author(s):  
Z Epners

The germination of coniferous seeds has been very low for several years at the Province of Ontario Nurseries located at Midhurst and Orono, in extreme cases being reduced to only 2%.Between 1959 and 1963 seeds which had failed to germinate were collected from beds of Pinus resinosa Sol., Pinus sylvestris L., Pinus strobus L., and Picea glauca (Moench.) Voss. From all such seeds tested a psychrophilic fungus was isolated, which grows between −1 and 27 °C but does not grow at 30 °C. In such non-germinated seeds the fungus is found in all cells of the endosperm and embryo, but instead of rotting the seeds, it mummifies them. The fungus was found in a viable state in infected seed [Formula: see text] years after these were sown.The fungus has not yet been identified and no record has been found of its previous isolation. In this work it has been called the seed-fungus (S-fungus). It is not a damping-off fungus since it does not kill the seedlings before or as they emerge from the soil and, even when seedling stems are soft and succulent, it does not cause root rot or top killing. Under favorable conditions the fungus may kill 100% of conifer seeds in infested soil. Control was achieved through pelleting the seeds with Captan.The fungus produces sympodiospores and has some affinity with the genera Costantinella and Nodulisporium, but differs significantly from them.


Plant Disease ◽  
2000 ◽  
Vol 84 (8) ◽  
pp. 921-921
Author(s):  
M. Tomaso-Peterson ◽  
L. E. Trevathan ◽  
M. S. Gonzalez

Take-all root rot has been reported as a destructive disease of St. Augustinegrass home lawns in Florida and Alabama (1). In June 1998 and 1999, St. Augustinegrass home lawns in central Mississippi developed chlorotic, thinning patches ranging from 0.5 to 4.5 m in diameter. By August of each summer, plants within affected patches were necrotic and dead. Roots of affected St. Augustinegrass were necrotic and shorter than those of unaffected plants; nodes on stolons were necrotic, and lesions developed on internodes. Ectotrophic runner hyphae and dark brown, lobed hyphopodia were visible on roots and aboveground plant parts, respectively. Symptomatic tissues collected from St. Augustinegrass home lawns were plated onto potato dextrose agar (PDA); the incitant of take-all root rot, Gaeumannomyces graminis(Sacc.) Arx & Olivier var. graminis, was isolated. Verification of G. graminis var. graminis was based on colony morphology and taxonomic identification consistent with the description by Walker (2). G. graminis var. graminis isolated from symptomatic St. Augustinegrass was grown on sterile tall fescue seed and incorporated into sterile sand/peat moss mix. Asymptomatic St. Augustinegrass sprigs were washed, and roots were removed prior to planting in infested and noninfested soil. Plants were cultured in the greenhouse for 60 days. St. Augustinegrass planted into noninfested soil was asymptomatic while plants collected from G. graminis var. graminis-infested soil were symptomatic for take-all root rot. Crowns and roots of affected plants were necrotic; leaves were chlorotic and necrotic. Both runner hyphae and lobed hyphopodia were visible. G. graminis var. graminis was reisolated from symptomatic tissues and confirmed as the incitant of take-all root rot. This is the first report of take-all root rot of St. Augustinegrass in Mississippi. References: (1) M. Elliott. Plant Dis. 77:206, 1993. (2) J. Walker. Trans. Br. Mycol. Soc. 58:427, 1972.


Sign in / Sign up

Export Citation Format

Share Document