scholarly journals First Report of Downy Mildew Caused by Peronospora lamii on Salvia splendens and Salvia coccinea

Plant Disease ◽  
2000 ◽  
Vol 84 (10) ◽  
pp. 1154-1154 ◽  
Author(s):  
G. E. Holcomb

Angular chlorotic spots were observed on adaxial leaf surfaces of Salvia splendens (scarlet sage cvs. Empire Purple, Empire White, Red Pillar, and Red Hot Sally) and S. coccinea (scarlet or Texas sage cv. Lady in Red) in early May in Baton Rouge area nurseries. Leaf spots sometimes became necrotic and resulted in leaf drop. Abaxial leaf surfaces contained scattered patches of white mycelia with brown spores. Microscopic examination of mycelia revealed irregular dichotomously branched conidiophores with pointed tips and brown oval conidia. Conidiophores averaged 485 × 9 µm and conidia averaged 21 × 18 µm (16 to 26 × 15 to 23 µm) in dimensions. The fungus was identified as Peronospora lamii A. Braun (= P. swinglei Ellis & Everh.) based on these characters and its known occurrence on Salvia spp. and five other genera in the family Lamiaceae (2). Pathogenicity tests were performed by washing conidia from infected leaves into distilled water and mistinoculating S. coccinea cv. Lady in Red and S. splendens cv. Empire Purple with 50,000 spores/ml. Plants were held in a dew chamber at 20°C for 3 days, then moved to a greenhouse where temperatures ranged from 18 to 32°C. Typical angular chlorotic leaf spots developed on inoculated plants within 6 to 8 days and noninoculated plants remained healthy. The fungus did not sporulate under these greenhouse temperatures, but infected leaves that were removed and placed in a moist chamber at 25°C produced conidiophores and brown conidia typical of P. lamii within 2 to 3 days. P. lamii has been reported previously on S. officinalis (3) and S. reflexa (1) in the United States. This is the first report of downy mildew on S. coccinea and S. splendens. Appearance of the disease in retail nurseries that obtained plants from out of state (Arkansas) suggests a widespread occurrence of the disease on these host plants. References: (1) D. F. Farr et al. 1989. Fungi on Plants and Plant Products in the United States. American Phytopathological Society, St. Paul, MN. (2) S. M. Francis. 1981. Peronospora lamii. Descriptions of Pathogenic Fungi and Bacteria No. 688. Commonwealth Mycological Institute, Kew, England. (3) R. T. McMillan and W. R. Graves. Plant Dis. 78:317, 1994.

Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 696-696 ◽  
Author(s):  
J. A. Crouch ◽  
M. P. Ko ◽  
J. M. McKemy

Downy mildew of impatiens (Impatiens walleriana Hook.f.) was first reported from the continental United States in 2004. In 2011 to 2012, severe and widespread outbreaks were documented across the United States mainland, resulting in considerable economic losses. On May 5, 2013, downy mildew disease symptoms were observed from I. walleriana ‘Super Elfin’ at a retail nursery in Mililani, on the Hawai'ian island of Oahu. Throughout May and June 2013, additional sightings of the disease were documented from the islands of Oahu, Kauai, Maui, and Hawai'i from nurseries, home gardens, and botanical park and landscape plantings. Symptoms of infected plants initially showed downward leaf curl, followed by a stippled chlorotic appearance on the adaxial leaf surfaces. Abaxial leaf surfaces were covered with a layer of white mycelia. Affected plants exhibited defoliation, flower drop, and stem rot as the disease progressed. Based on morphological and molecular data, the organism was identified as Plasmopara obducens (J. Schröt.) J. Schröt. Microscopic observation disclosed coenocytic mycelium and hyaline, thin-walled, tree-like (monopodial branches), straight, 94.0 to 300.0 × 3.2 to 10.8 μm sporangiophores. Ovoid, hyaline sporangia measuring 11.0 to 14.6 × 12.2 to 16.2 (average 13.2 × 14.7) μm were borne on sterigma tips of rigid branchlets (8.0 to 15.0 μm) at right angle to the main axis of the sporangiophores (1,3). Molecular identification of the pathogen was conducted by removing hyphae from the surface of three heavily infected leaves using sterile tweezers, then extracting DNA using the QIAGEN Plant DNA kit (QIAGEN, Gaithersburg, MD). The nuclear rDNA internal transcribed spacer was sequenced from each of the three samples bidirectionally from Illustra EXOStar (GE Healthcare, Piscataway, NJ) purified amplicon generated from primers ITS1-O and LR-0R (4). Resultant sequences (GenBank KF366378 to 80) shared 99 to 100% nucleotide identity with P. obducens accession DQ665666 (4). A voucher specimen (BPI892676) was deposited in the U.S. National Fungus Collections, Beltsville, MD. Pathogenicity tests were performed by spraying 6-week-old impatiens plants (I. walleriana var. Super Elfin) grown singly in 4-inch pots with a suspension of 1 × 104 P. obducens sporangia/ml until runoff using a handheld atomizer. Control plants were sprayed with distilled water. The plants were kept in high humidity by covering with black plastic bags for 48 h at 20°C, and then maintained in the greenhouse (night/day temperature of 20/24°C). The first symptoms (downward curling and chlorotic stippling of leaves) and sporulation of the pathogen on under-leaf surfaces of the inoculated plants appeared at 10 days and 21 days after inoculation, respectively. Control plants remained healthy. Morphological features and measurements matched those of the original inoculum, thus fulfilling Koch's postulates. To our knowledge, this is the first report of downy mildew on I. walleriana in Hawai'i (2). The disease appears to be widespread throughout the islands and is likely to cause considerable losses in Hawai'ian landscapes and production settings. References: (1) O. Constantinescu. Mycologia 83:473, 1991. (2) D. F. Farr and A. Y. Rossman. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ July 16, 2013. (3) P. A. Saccardo. Syllogue Fungorum 7:242, 1888. (4) M. Thines. Fungal Genet Biol 44:199, 2007.


Plant Disease ◽  
2003 ◽  
Vol 87 (7) ◽  
pp. 875-875 ◽  
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
D. Bertetti ◽  
R. Nicoletti ◽  
M. L. Gullino

Lantana camara is increasingly grown in northern Italy as a potted plant and contributes to the diversification of offerings in the ornamental market. During the spring of 2001, selections of L. camara cuttings growing at a commercial farm located at Albenga (Riviera coast) exhibited tan leaf spots of irregular size and shape. Spots were at first isolated, 4 to 8 mm in diameter, and later coalesced and affected the entire plant. Heavily infected leaves, stems, and branches became blighted and were killed. Infected rooted cuttings also eventually died. Diseased cuttings showed a progressive reduction (to less than 20%) in rooting ability. Isolations from infected leaves and stems on potato dextrose agar (PDA), supplemented with 100 mg/liter of streptomycin sulphate, consistently yielded a fungus with mycelial and cultural characteristics resembling Rhizoctonia solani. The fungal isolates were further characterized as R. solani Kühn AG-4 based on hyphal anastomoses with several AG-4 tester isolates. Pathogenicity tests were performed by placing 5-day-old-fungal mycelial plugs, grown on PDA, at the base of five healthy yellow-sage stems and holding plants in a dew chamber at 18 to 22°C. After 2 days, foliage blight appeared on leaves of inoculated plants, and after 3 days, stems also became infected and entire plants wilted. Five noninoculated plants remained healthy. The fungal pathogen was reisolated from all inoculated plants. R. solani has been observed on L. camara in the United States (1) and the Philippines (2). To our knowledge, this is the first report of R. solani on L. camara in Europe. References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (2) F. T. Orillo and R. B. Valdez. Philipp. Agric. A. 42:292, 1958.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 425-425 ◽  
Author(s):  
M. Zhang ◽  
T. Tsukiboshi ◽  
I. Okabe

European columbine, Aquilegia vulgaris L., Ranunculaceae, is an herbaceous flower widely used in gardens, parterres, and courtyards and is a traditional herbal plant. During the summer of 2008, leaf spots were observed on a plant cultivated along a roadside area in Nasushiobara, Tochigi, Japan. In some courtyards, the leaf spot affected more than 60% of the plants. Early symptoms appeared as small, round or elliptic, brown lesions on the leaves. Lesions expanded to 5 to 15 × 4 to 10 mm, irregular spots that were dark brown to black in the middle, with pale yellow-brown or purple-brown margins. In continuously wet or humid conditions, thick, gray mycelium and conidia appeared on the surface of leaf spots. Conidiophores were melanized at the base and hyaline near the apex, branched, and septated (approximately 3 mm × 16 to 18 μm). Conidia were hyaline, aseptate, ellipsoidal to obovoid, with a slightly protuberant hilum, and ranged from 9 to 14.5 × 5.5 to 6.5 μm. The pathogen was identified as Botrytis cinerea Pers.:Fr on the basis of morphology and sequence of ITS1-5.8s-ITS2 region of rDNA. The sequence (GenBank Accession No. FJ424510) exactly matched the sequences of two Botryotinia fuckeliana (anamorph Botrytis cinerea), (e.g., GenBank Accession Nos. AY686865 and FJ169666) (2). The fungus was isolated on potato dextrose agar (PDA) from a single conidium found on the symptomatic leaf tissue. Colonies of B. cinerea were first hyaline and later turned gray to black when the spores differentiated. Koch's postulates were performed with three whole plants of potted aquilegia. Leaves were inoculated with mycelia plugs harvested from the periphery of a 7-day-old colony; an equal number of plants were inoculated with the plugs of PDA medium only and served as controls. All plants were covered with plastic bags for 24 h to maintain high relative humidity and incubated at 25°C. After 8 days, all mycelium-inoculated plants showed symptoms identical to those observed on leaves from A. vulgaris infected in the field, whereas controls remained symptom free. Reisolation of the fungus from lesions on inoculated leaves confirmed that the causal agent was B. cinerea. B. cinerea has been previously reported on A. vulgaris in the United States and China (1,3). To our knowledge, this is the first report of leaf spots caused by B. cinerea on A. vulgaris in Japan. References: (1) Anonymous. Index of Plant Diseases in the United States. USDA Agric. Handb. No 165, 1960. (2) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, England, 1971. (3) Z. Y. Zhang. Flora Fungorum Sinicorum. Vol. 26. Botrytis, Ramularia. Science Press, Beijing, 2006.


Plant Disease ◽  
2006 ◽  
Vol 90 (1) ◽  
pp. 112-112 ◽  
Author(s):  
J. M. Mullen ◽  
E. J. Sikora ◽  
J. M. McKemy ◽  
M. E. Palm ◽  
L. Levy ◽  
...  

On November 4, 2004, soybean leaves (Glycine max (L.) Merr) were submitted to the Auburn University Plant Diagnostic Lab by a State Department of Agriculture and Industries Inspector. Samples were collected from an 80-ha field of soybean plants in a late-reproductive-growth stage in Mobile County, Alabama. Under microscopic examination, leaves showed rust pustules in advanced stages of development with urediniospores and sori characteristic of Phakopsora spp. Uredinia were ostiolate in small, brown, angular leaf spots (2 to 3 mm) on lower leaf surfaces. Urediniospores were pale yellow-to-white, globose or ovate, 20 to 40 × 15 to 25 μm. In a subsequent visit to the field, symptoms and signs of the rust disease were observed on plants bordering the edge of the field since the majority of plants were senescent. Tan lesions on lower leaf surfaces contained small pustules surrounded by a small zone of slightly discolored necrotic tissue. Masses of tan spores covered the lower leaf surface pustules. Leaves were mailed overnight to the USDA National Identification Services (Mycology) Laboratory in Beltsville, MD. The fungal structures were confirmed to be a Phakopsora sp., and the sample was forwarded to the USDA National Plant Germplasm and Biotechnology Laboratory in Beltsville, MD. DNA was extracted from leaf pieces containing sori using the Qiagen DNeasy Plant Mini kit (Qiagen, Valencia, CA). Phakopsora pachyrhizi was detected using a real-time polymerase chain reaction (PCR) protocol (1) performed in a Cepheid SmartCycler (Sunnyvale, CA). The PCR master mix was modified to include OmniMix beads (Cepheid). The field and microscopic suspect diagnosis of P. pachyrhizi was confirmed officially by APHIS on November 18, 2004. This was the fourth USDA official confirmation of Asian soybean rust in the continental United States during 2004, and to our knowledge, this is the first report of the disease in Alabama. This report helps confirm that early occurrences of Asian soybean rust in the United States were present in other areas in addition to the first reported finding in Louisiana (2). References: (1) R. D. Frederick et al. Phytopathology 92:217, 2002. (2) R. W. Schneider et al. Plant Dis. 89:774, 2005.


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 849-849 ◽  
Author(s):  
A. Colmán ◽  
R. A. da Silva ◽  
R. Alves ◽  
M. Silva ◽  
R. W. Barreto

Phoenix roebelenii (Arecaceae), known as dwarf date (tamareira-anã in Brazil), is a palm native to Southeast Asia and widely cultivated worldwide because of its ornamental value and ease of adaptation to a broad range of climates and soil types (4). In June 2012, some individuals were observed in a private garden in the municipality of Viçosa (state of Minas Gerais, Brazil) bearing numerous necrotic lesions on its leaves. Representative samples were taken, dried in a plant press, and brought to the laboratory for examination. A fungus was regularly associated with the leaf spots. Fungal structures were mounted in lactophenol and slides were examined under a microscope (Olympus BX 51). Spores were taken from sporulating colonies with a sterile fine needle and plated on PDA for isolation. A pure culture was deposited in the culture collection of the Universidade Federal de Viçosa (accession COAD1338). A dried herbarium sample was deposited in the local herbarium (VIC39741). The fungus had the following morphology: conidiophores grouped on sporodochia, cylindrical, 12 to 29 × 5 to 6 μm, dark brown; conidiogenous cells, terminal, proliferating percurrently (annellidic), 8 to 20 × 5 to 6 μm, pale to dark brown; conidia obclavate to subcylindrical, straight, 58 to 147 × 5 to 6 μm, 6 to 16 septate, hila thickened and darkened with a thin-walled projecting papilla, dark brown, and verrucose. The morphology of the Brazilian collections agrees well with the description of Stigmina palmivora (2), a species known to cause leaf spots on P. roebelenii in the United States (Florida) and Japan (3). Pathogenicity was demonstrated through inoculation of leaves of healthy plants by placing 6 mm diameter cuture disks of COAD1338 on the leaf surface followed by incubation in a moist chamber for 48 h and then transferred to a greenhouse bench at 21 ± 3°C. Typical leaf spots were observed 15 days after inoculation. DNA was extracted from the isolate growing in pure culture and ITS and LSU sequences were generated and deposited in GenBank under the accession numbers KF656785 and KF656786, respectively. These were compared by BLASTn with other entries in GenBank, and the closest match for each region were Mycosphaerella colombiensis strain X215 and M. irregulariamosa strain CPC 1362 (EU514231, GU2114441) with 93% of nucleotide homology (over 100% query coverage) for ITS and 98% of nucleotide homology (over 100% query coverage) for LSU. There are no sequences for S. palmivora deposited in public databases for comparison, but for Stigmina platani, the type species in this genus, 86% and 96% nucleotide homology for ITS and LSU with S. palmivora were found. The genus Stigmina is regarded as being polyphyletic (1) and this is probably reflected by these low homology levels found in the BLASTn search. To our knowledge, this is the first report of Stigmina palmivora in Brazil. References: (1) P. W. Crous et al. Stud. Mycol. 75:37, 2012. (2) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, UK, 1971. (3) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab. ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , 2013. (4) H. Lorenzi et al. Palmeira no Brasil: Exóticas e Nativas, 2nd ed. Editora Plantarum, Nova Odessa, Brazil, 2005.


Plant Disease ◽  
1998 ◽  
Vol 82 (5) ◽  
pp. 591-591 ◽  
Author(s):  
S. T. Koike ◽  
P. A. Nolan ◽  
S. A. Tjosvold ◽  
K. L. Robb

In California, hybrid statice (Misty series; Limonium bellidifolium × Limonium latifolium) is grown as a commercial cutflower crop in fields and greenhouses. In 1997, downy mildew was observed on statice plantings in both southern (San Diego County) and central (Monterey and Santa Cruz counties) parts of coastal California. Initial symptoms consisted of light green, irregularly shaped leaf spots that, after a few days, became chlorotic. As disease progressed, chlorotic spots coalesced and turned necrotic, at times resulting in extensive death of leaf tissues. Under favorable conditions, the purple to gray sporulation of the pathogen could be seen on abaxial surfaces of leaves. Conidiophores had main trunks with dichotomous branches and measured 194 to 335 μm in length (mean = 229 μm) from the base to the first branches and 7 to 8 μm across at the widest part. Branch ends were slender with curved tips that measured 5 to 8 μm long. Conidia were ovoid to globose with very short pedicels, and measured 14 to 19 μm × 14 to 17 μm. Conidial surfaces appeared slightly roughened when viewed with a scanning electron microscope. Clearing leaf sections with 10% NaOH (1) revealed the presence of yellow-brown, globose oospores that measured 31 to 47 μm. The pathogen was identified as Peronospora statices (1). Pathogenicity was demonstrated by pressing leaves with abundant sporulation against healthy leaves of test plants (Misty White) and then placing inoculated plants in a humidity chamber. After 10 to 12 days, symptoms similar to those originally observed developed on inoculated plants; after 14 to 16 days, purple fungal growth morphologically similar to the original isolates grew on leaves. Uninoculated control plants did not develop symptoms or signs of downy mildew. This is the first report of downy mildew caused by P. statices on statice in California and the rest of the United States. The disease has also been confirmed on Blue Fantasia (L. bellidifolium × L. perezii). This disease has been reported previously in Italy, The Netherlands, and the United Kingdom (1). Reference: (1) G. S. Hall et al. Eur. J. Plant Pathol. 103:471, 1997.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1116-1116 ◽  
Author(s):  
V. Parkunan ◽  
S. Li ◽  
E. G. Fonsah ◽  
P. Ji

Research efforts were initiated in 2003 to identify and introduce banana (Musa spp.) cultivars suitable for production in Georgia (1). Selected cultivars have been evaluated since 2009 in Tifton Banana Garden, Tifton, GA, comprising of cold hardy, short cycle, and ornamental types. In spring and summer of 2012, 7 out of 13 cultivars (African Red, Blue Torres Island, Cacambou, Chinese Cavendish, Novaria, Raja Puri, and Veinte Cohol) showed tiny, oval (0.5 to 1.0 mm long and 0.3 to 0.9 mm wide), light to dark brown spots on the adaxial surface of the leaves. Spots were more concentrated along the midrib than the rest of the leaf and occurred on all except the newly emerged leaves. Leaf spots did not expand much in size, but the numbers approximately doubled during the season. Disease incidences on the seven cultivars ranged from 10 to 63% (10% on Blue Torres Island and 63% on Novaria), with an average of 35% when a total of 52 plants were evaluated. Six cultivars including Belle, Ice Cream, Dwarf Namwah, Kandarian, Praying Hands, and Saba did not show any spots. Tissue from infected leaves of the seven cultivars were surface sterilized with 0.5% NaOCl, plated onto potato dextrose agar (PDA) media and incubated at 25°C in the dark for 5 days. The plates were then incubated at room temperature (23 ± 2°C) under a 12-hour photoperiod for 3 days. Grayish black colonies developed from all the samples, which were further identified as Alternaria spp. based on the dark, brown, obclavate to obpyriform catenulate conidia with longitudinal and transverse septa tapering to a prominent beak attached in chains on a simple and short conidiophore (2). Conidia were 23 to 73 μm long and 15 to 35 μm wide, with a beak length of 5 to 10 μm, and had 3 to 6 transverse and 0 to 5 longitudinal septa. Single spore cultures of four isolates from four different cultivars were obtained and genomic DNA was extracted and the internal transcribed spacer (ITS1-5.8S-ITS2) regions of rDNA (562 bp) were amplified and sequenced with primers ITS1 and ITS4. MegaBLAST analysis of the four sequences showed that they were 100% identical to two Alternaria alternata isolates (GQ916545 and GQ169766). ITS sequence of a representative isolate VCT1FT1 from cv. Veinte Cohol was submitted to GenBank (JX985742). Pathogenicity assay was conducted using 1-month-old banana plants (cv. Veinte Cohol) grown in pots under greenhouse conditions (25 to 27°C). Three plants were spray inoculated with the isolate VCT1FT1 (100 ml suspension per plant containing 105 spores per ml) and incubated under 100% humidity for 2 days and then kept in the greenhouse. Three plants sprayed with water were used as a control. Leaf spots identical to those observed in the field were developed in a week on the inoculated plants but not on the non-inoculated control. The fungus was reisolated from the inoculated plants and the identity was confirmed by morphological characteristics and ITS sequencing. To our knowledge, this is the first report of Alternaria leaf spot caused by A. alternata on banana in the United States. Occurrence of the disease on some banana cultivars in Georgia provides useful information to potential producers, and the cultivars that were observed to be resistant to the disease may be more suitable for production. References: (1) E. G. Fonsah et al. J. Food Distrib. Res. 37:2, 2006. (2) E. G. Simmons. Alternaria: An identification manual. CBS Fungal Biodiversity Center, Utrecht, Netherlands, 2007.


Plant Disease ◽  
2004 ◽  
Vol 88 (8) ◽  
pp. 909-909 ◽  
Author(s):  
S. N. Wegulo ◽  
S. T. Koike ◽  
M. Vilchez ◽  
P. Santos

During February 2004, diseased double impatiens (Impatiens walleriana) plants were received from a commercial grower in southern California. The upper surfaces of symptomatic leaves were pale yellow with no distinct lesions. Diseased leaves later wilted, and severely affected leaves abscised from the stem. At the nursery, only double impatiens plants in the Fiesta series were infected, and some cultivars were more heavily infected than others. Disease incidence in cv. Sparkler Hot pink was nearly 100%. The interior of infected leaves was colonized by coenocytic mycelium. A conspicuous white growth was observed only on the underside of leaves. Sporangiophores were hyaline, thin walled, emergent from stomata, and had slightly swollen bases. Sporangiophore branching was distinctly monopodial. Smaller sporangiophore branches were arranged at right angles to the supporting branches, and tips of branches measured 8 to 14 μm long. Sporangia were ovoid and hyaline with a single pore on the distal ends. Distal ends of sporangia were predominantly flat but occasionally had a slight papilla. Short pedicels were present on the attached ends. Sporangia measured 19.4 to 22.2 (-25.0) μm × 13.9 to 16.7 (-19.4) μm. Oospores were not observed in leaf tissue. On the basis of symptoms and morphology of the organism, the pathogen was identified as Plasmopara obducens J. Schröt. Pathogenicity tests were done on double type cvs. Fiesta, Tioga Red, and Tioga Cherry Red and on single type cvs. Cajun Watermelon and Accent Lilac. Plants were spray inoculated with sporangiospore suspensions (1 × 104 sporangiospores per milliliter), incubated for 24 h in a dew chamber (18 to 20°C), and then maintained in a greenhouse (22 to 24°C). Symptoms and signs of downy mildew developed after 12 days only on inoculated cv. Fiesta plants, and the pathogen morphology matched that of the originally observed pathogen. Nontreated control plants did not develop downy mildew. To our knowledge, this is the first report of downy mildew on impatiens in California. P. obducens is one of two causal agents of downy mildew of impatiens (2,4). The other pathogen, Bremiella sphaerosperma, has dichotomous sporangiophore branching and causes lesions with well-defined margins (2,4). In the United States, the disease has been recorded in the eastern and northeastern states and in Indiana, Minnesota, Mississippi, Montana, and Wisconsin (3). In Canada, the disease has been recorded in Manitoba and Quebec (1). References: (1) I. L. Conners. An Annotated Index of Plant Diseases in Canada and Fungi Recorded on Plants in Alaska, Canada, and Greenland. Research Branch, Canada Department of Agriculture, Publication 1251, 1967. (2) O. Constantinescu. Mycologia 83:473, 1991. (3) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, 1989. (4) G. W. Wilson. Bull. Torrey Bot. Club 34:387, 1907.


Plant Disease ◽  
2020 ◽  
Vol 104 (7) ◽  
pp. 1994-2004
Author(s):  
Bo Liu ◽  
Larry Stein ◽  
Kimberly Cochran ◽  
Lindsey J. du Toit ◽  
Chunda Feng ◽  
...  

Leaf spot diseases have become a major concern in spinach production in the United States. Determining the causal agents of leaf spots on spinach, their prevalence and pathogenicity, and fungicide efficacy against these pathogens is vital for effective disease management. Spinach leaves with leaf spots were collected from Texas, California, Arizona, and South Carolina from 2016 to 2018, incubated in a moist chamber, and plated on potato dextrose and tryptic soy agar media. Fungal and bacterial colonies recovered were identified based on morphology and sequence analysis of the internal transcribed spacer rDNA and 16S rRNA, respectively. Two predominant genera were isolated: (i) Colletotrichum spp., which were identified to species based on sequences of both introns of the glutamate synthetase (GS-I) and glyceraldehyde-3-phosphate dehydrogenase (gapdh-I) genes; and (ii) Stemphylium spp., identified to species based on sequences of the gapdh and calmodulin (cmdA) genes. Anthracnose (Colletotrichum spinaciae) and Stemphylium leaf spot (Stemphylium vesicarium and S. beticola) were the predominant diseases. Additional fungi recovered at very limited frequencies that were also pathogenic to spinach included Colletotrichum coccodes, C. truncatum, Cercospora beticola, and Myrothecium verrucaria. All of the bacterial isolates were not pathogenic on spinach. Pathogenicity tests showed that C. spinaciae, S. vesicarium, and S. beticola caused significant leaf damage. The fungicides Bravo WeatherStik (chlorothalonil), Dithane F-45 (mancozeb), Cabrio (pyraclostrobin), and Merivon (fluxapyroxad and pyraclostrobin) were highly effective at reducing leaf spot severity caused by an isolate of each of C. spinaciae and S. vesicarium, when inoculated individually and in combination.


Plant Disease ◽  
2010 ◽  
Vol 94 (6) ◽  
pp. 788-788 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. T. Amatulli ◽  
M. L. Gullino

Persimmon (Diospyros kaki L.) is widely grown in Italy, the leading producer in Europe. In the fall of 2009, a previously unknown rot was observed on 3% of fruit stored at temperatures between 5 and 15°C in Torino Province (northern Italy). The decayed area was elliptical, firm, and appeared light brown to dark olive-green. It was surrounded by a soft margin. The internal decayed area appeared rotten, brown, and surrounded by bleached tissue. On the decayed tissue, black pycnidia that were partially immersed and up to 0.5 mm in diameter were observed. Light gray conidia produced in the pycnidia were unicellular, ovoid or lacriform, and measured 3.9 to 6.7 × 2.3 to 3.5 (average 5.0 × 2.9) μm. Fragments (approximately 2 mm) were taken from the margin of the internal diseased tissues, cultured on potato dextrose agar (PDA), and incubated at temperatures between 23 and 26°C under alternating light and darkness. Colonies of the fungus initially appeared ash colored and then turned to dark greenish gray. After 14 days of growth, pycnidia and conidia similar to those described on fruit were produced. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 502-bp segment showed a 100% similarity with the sequence of Phacidiopycnis washingtonensis Xiao & J.D. Rogers (GenBank Accession No. AY608648). The nucleotide sequence has been assigned the GenBank Accession No. GU949537. Pathogenicity tests were performed by inoculating three persimmon fruits after surface disinfesting in 1% sodium hypochlorite and wounding. Mycelial disks (10 mm in diameter), obtained from PDA cultures of one strain were placed on wounds. Three control fruits were inoculated with plain PDA. Fruits were incubated at 10 ± 1°C. The first symptoms developed 6 days after the artificial inoculation. After 15 days, the rot was very evident and P. washingtonensis was consistently reisolated. Noninoculated fruit remained healthy. The pathogenicity test was performed twice. Since P. washingtonensis was first identified in the United States on decayed apples (2), ‘Fuji’, ‘Gala’, ‘Golden Delicious’, ‘Granny Smith’, ‘Red Chief’, and ‘Stark Delicious’, apple fruits also were artificially inoculated with a conidial suspension (1 × 106 CFU/ml) of the pathogen obtained from PDA cultures. For each cultivar, three surface-disinfested fruit were wounded and inoculated, while three others served as mock-inoculated (sterile water) controls. Fruits were stored at temperatures ranging from 10 to 15°C. First symptoms appeared after 7 days on all the inoculated apples. After 14 days, rot was evident on all fruit inoculated with the fungus, and P. washingtonensis was consistently reisolated. Controls remained symptomless. To our knowledge, this is the first report of the presence of P. washingtonensis on persimmon in Italy, as well as worldwide. The occurrence of postharvest fruit rot on apple caused by P. washingtonensis was recently described in the United States (3). In Italy, the economic importance of the disease on persimmon fruit is currently limited, although the pathogen could represent a risk for apple. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) Y. K. Kim and C. L. Xiao. Plant Dis. 90:1376, 2006. (3) C. L. Xiao et al. Mycologia 97:473, 2005.


Sign in / Sign up

Export Citation Format

Share Document