scholarly journals First Report of Postharvest Fruit Rot in Persimmon Caused by Phacidiopycnis washingtonensis in Italy

Plant Disease ◽  
2010 ◽  
Vol 94 (6) ◽  
pp. 788-788 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. T. Amatulli ◽  
M. L. Gullino

Persimmon (Diospyros kaki L.) is widely grown in Italy, the leading producer in Europe. In the fall of 2009, a previously unknown rot was observed on 3% of fruit stored at temperatures between 5 and 15°C in Torino Province (northern Italy). The decayed area was elliptical, firm, and appeared light brown to dark olive-green. It was surrounded by a soft margin. The internal decayed area appeared rotten, brown, and surrounded by bleached tissue. On the decayed tissue, black pycnidia that were partially immersed and up to 0.5 mm in diameter were observed. Light gray conidia produced in the pycnidia were unicellular, ovoid or lacriform, and measured 3.9 to 6.7 × 2.3 to 3.5 (average 5.0 × 2.9) μm. Fragments (approximately 2 mm) were taken from the margin of the internal diseased tissues, cultured on potato dextrose agar (PDA), and incubated at temperatures between 23 and 26°C under alternating light and darkness. Colonies of the fungus initially appeared ash colored and then turned to dark greenish gray. After 14 days of growth, pycnidia and conidia similar to those described on fruit were produced. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 502-bp segment showed a 100% similarity with the sequence of Phacidiopycnis washingtonensis Xiao & J.D. Rogers (GenBank Accession No. AY608648). The nucleotide sequence has been assigned the GenBank Accession No. GU949537. Pathogenicity tests were performed by inoculating three persimmon fruits after surface disinfesting in 1% sodium hypochlorite and wounding. Mycelial disks (10 mm in diameter), obtained from PDA cultures of one strain were placed on wounds. Three control fruits were inoculated with plain PDA. Fruits were incubated at 10 ± 1°C. The first symptoms developed 6 days after the artificial inoculation. After 15 days, the rot was very evident and P. washingtonensis was consistently reisolated. Noninoculated fruit remained healthy. The pathogenicity test was performed twice. Since P. washingtonensis was first identified in the United States on decayed apples (2), ‘Fuji’, ‘Gala’, ‘Golden Delicious’, ‘Granny Smith’, ‘Red Chief’, and ‘Stark Delicious’, apple fruits also were artificially inoculated with a conidial suspension (1 × 106 CFU/ml) of the pathogen obtained from PDA cultures. For each cultivar, three surface-disinfested fruit were wounded and inoculated, while three others served as mock-inoculated (sterile water) controls. Fruits were stored at temperatures ranging from 10 to 15°C. First symptoms appeared after 7 days on all the inoculated apples. After 14 days, rot was evident on all fruit inoculated with the fungus, and P. washingtonensis was consistently reisolated. Controls remained symptomless. To our knowledge, this is the first report of the presence of P. washingtonensis on persimmon in Italy, as well as worldwide. The occurrence of postharvest fruit rot on apple caused by P. washingtonensis was recently described in the United States (3). In Italy, the economic importance of the disease on persimmon fruit is currently limited, although the pathogen could represent a risk for apple. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) Y. K. Kim and C. L. Xiao. Plant Dis. 90:1376, 2006. (3) C. L. Xiao et al. Mycologia 97:473, 2005.

Plant Disease ◽  
2020 ◽  
Author(s):  
Sean M Toporek ◽  
Anthony P. Keinath

Anthracnose fruit rot caused by various Colletotrichum spp. is a serious disease for pepper (Capsicum annuum) growers, resulting in extensive fruit loss (Harp et al. 2008). Samples of five pepper fruits were obtained from two commercial farms in Lexington and Pickens counties, South Carolina, in August and September 2019, respectively. All fruits had two or more soft, sunken lesions covered with salmon-colored spore masses. Pieces of diseased tissue cut from the margins of lesions were surface disinfested in 0.6% sodium hypochlorite, rinsed in sterile deionized water, blotted dry, and placed on one-quarter-strength potato dextrose agar (PDA/4) amended with 100 mg chloramphenicol, 100 mg streptomycin sulfate, and 60.5 mg mefenoxam (0.25 ml Ridomil Gold EC) per liter. Two isolates of Colletotrichum sp. per fruit were preserved on dried filter paper and stored at 10º C. One additional isolate of Colletotrichum sp. had been collected from a jalapeño pepper fruit on a farm in Charleston County, South Carolina, in 1997. Colony morphology of three isolates, one per county, on Spezieller Nährstoffarmer Agar (SNA) was pale grey with a faint orange tint. All isolates readily produced conidia on SNA with an average length of 16.4 μm (std. dev. = 1.8 μm) and a width of 2.2 μm (std. dev. = 0.2 μm). Conidia were hyaline, smooth, straight, aseptate, cylindrical to fusiform with one or both ends slightly acute or round, matching the description of C. scovillei (Damm et al. 2012). The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-tubulin (TUB2) genes from three isolates were amplified and sequenced with the primer pairs GDF1/GDR1 and T1/Bt2b, respectively. Species within the C. acutatum clade can be readily distinguished with GAPDH or TUB2 (Cannon et al. 2012). The GAPDH and TUB2 sequences for all three isolates were 100% similar to each other and strain CBS 126529 (GAPDH accession number JQ948597; TUB2 accession number JQ949918) of C. scovillei (Damm et al. 2012). GAPDH and TUB2 sequences for each isolate were deposited in GenBank under the accessions MT826948–MT826950 and MT826951-MT826953, respectively. A pathogenicity test was conducted on jalapeño pepper fruits by placing a 10-ul droplet of a 5 x 105 conidial suspension of each isolate onto a wound made with a sterile toothpick. Control peppers were mock inoculated with 10 ul sterile distilled water. A humid chamber was prepared by placing moist paper towels on the bottom of a sealed crisper box. Inoculated peppers were placed on upside-down 60 ml plastic condiment cups. Three replicate boxes each containing all four treatments were prepared. The experiment was repeated once. After 7 days in the humid chamber at 26ºC, disease did not develop on control fruits, whereas soft, sunken lesions covered with salmon-colored spores developed on inoculated fruits. Lesions were measured and C. scovillei was re-isolated onto amended PDA/4 as previously described. Lesion length averaged 15.6 mm (std dev. = 4.1 mm) by 11.5 mm (std dev. = 2.0 mm). Colletotrichum sp. resembling the original isolate were recovered from all inoculated fruit, but not from non-inoculated fruit. C. scovillei has been reported in Brazil in South America and in China, Indonesia, Japan, Malaysia, South Korea, Taiwan, and Thailand in Asia (Farr and Rossman 2020). This is the first report of C. scovillei as the casual organism of anthracnose fruit rot on pepper in South Carolina and the United States.


Plant Disease ◽  
2012 ◽  
Vol 96 (6) ◽  
pp. 910-910 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
A. Poli ◽  
M. L. Gullino

Pear (Pyrus communis L.) is widely grown in Italy, the leading producer in Europe. In summer 2011, a previously unknown rot was observed on fruit of an old cultivar, Spadoncina, in a garden in Torino Province (northern Italy). The decayed area of the fruit was soft, dark brown, slightly sunken, circular, and surrounded by an irregular margin. The internal decayed area appeared rotten and brown and rotted fruit eventually fell. To isolate the causal agent, fruits were soaked in 1% NaOCl for 30 s and fragments (approximately 2 mm) were taken from the margin of the internal diseased tissues, cultured on potato dextrose agar (PDA), and incubated at temperatures between 20 and 28°C under alternating light and darkness. Colonies of the fungus initially appeared whitish, then turned dark gray. After about 30 days of growth, unicellular elliptical hyaline conidia were produced in pycnidia. Conidia measured 16 to 24 × 5 to 7 (average 20.1 × 5.7) μm (n = 50). The morphological characteristics are similar to those of the fungus Botryosphaeria dothidea (Moug.: Fr.) Ces. & De Not. (4). The internal transcribed spacer (ITS) region of rDNA was amplified with the primers ITS1/ITS4 and sequenced. BLAST analysis (1) of the 473-bp segment showed a 100% similarity with the sequence of the epitype of B. dothidea AY236949. The nucleotide sequence has been assigned the GenBank Accession No. JQ418493. Pathogenicity tests were performed by inoculating six pear fruits of the same cultivar (Spadoncina) after surface disinfesting in 1% sodium hypochlorite and wounding. Mycelial disks (8 mm diameter), obtained from 10-day-old PDA cultures of one strain, were placed on wounds. Six control fruits were inoculated with plain PDA. Fruits were incubated at 25 ± 1°C in plastic boxes. The first symptoms developed 3 days after inoculation. After 5 days, the rot was very evident and B. dothidea was consistently reisolated. Noninoculated fruits remained healthy. The pathogenicity test was performed twice. B. dothidea was identified on decayed pears in the United States (2), South Africa, New Zealand, Japan, and Taiwan (3). To our knowledge, this is the first report of the presence of B. dothidea on pear in Italy, as well as in Europe. In Italy, the economic importance of the disease on pear fruit is at present limited, although the pathogen could represent a risk for this crop. References: (1) S. F. Altschul et al. Nucleic Acids Res., 25:3389, 1997. (2) L. F. Grand. Agr. Res. Serv. Techn. Bull. 240:1, 1985. (3) Y. Ko et al. Plant Prot. Bull. (Taiwan) 35:211, 1993. (4) B. Slippers et al. Mycologia 96:83, 2004.


Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 634-634 ◽  
Author(s):  
S. M. Williamson ◽  
T. B. Sutton

Persimmon trees are important for their fruit as well as their colorful fruit and foliage in the fall. Persimmon fruit (Japanese persimmon, Diospyros kaki cv. Fuyu) were collected in November 2008 from a tree in Windsor, NC, located in the Coastal Plain. Fruit were not symptomatic on the tree but developed dark lesions after harvest. Isolations from six fruit yielded seven isolates of Colletotrichum acutatum J. H. Simmonds. After incubation at 25°C under continuous light for 15 days on potato dextrose agar (PDA), all isolates had gray aerial mycelium, but the inverse sides of the plates of six isolates were maroon and one was beige. Masses of salmon-colored conidia were formed first in the center of the colonies, then were observed scattered across the colonies in older cultures. Conidia were hyaline, one-celled, elliptic with one or both ends pointed, and measured 8.1 to 16.3 × 3.1 to 5 μm. Setae and sclerotia were not observed. There were also dark structures measuring 1 to 10 mm that were partially embedded in the agar that contained conidia. Cultural and conidial characteristics of the isolates were similar to those of C. acutatum (3). PCR amplification was performed with the species-specific primer pair CaInt2/ITS4 (2) and genomic DNA from the original isolates and isolates obtained from inoculated fruit. An amplification product of approximately 490 bp, which is specific for C. acutatum, was observed. To fulfill Koch's postulates, persimmon fruit obtained from the grocery store were surface disinfested with 0.5% sodium hypochlorite and sterile filter paper disks dipped in conidial suspensions (1 × 105 conidia/ml) of two C. acutatum isolates (maroon and beige reverse) or sterile, deionized water were placed on the fruit. Three fruit were inoculated per treatment and the disks were placed on four locations on each fruit. Parafilm was wrapped around the diameter of the fruit to keep the filter paper disks moist and in place. Fruit were placed in moist chambers and incubated at 25°C. After 3 days, the Parafilm was removed and the fruit returned to the moist chambers. Small, dark lesions were observed on fruit inoculated with each isolate of C. acutatum when the filter paper disks were removed. Ten days after inoculation, dark lesions and acervuli with salmon-colored masses of conidia were observed on fruit inoculated with both isolates of C. acutatum and the fruit were soft. After 12 days, there were abundant masses of conidia and the inoculated areas were decayed. Control fruit remained firm and did not develop symptoms. Cultures obtained from the fruit and the conidia produced were typical of the isolates used to inoculate the fruit. C. acutatum has been reported to cause fruit rot on persimmon fruit in New Zealand (1). To our knowledge, this is the first report of C. acutatum on persimmon fruit in the United States. References: (1) R. Lardner et al. Mycol. Res. 103:275, 1999. (2) S. Sreenivasaprasad et al. Plant Pathol. 45:650, 1996. (3) B. C. Sutton. Page 523 in: Coelomycetes. Commonwealth Agricultural Bureaux, Great Britain. 1980.


Plant Disease ◽  
2006 ◽  
Vol 90 (9) ◽  
pp. 1260-1260 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
D. Minerdi ◽  
M. L. Gullino

Penstemon barbatus (Cav.) Roth (synonym Chelone barbata), used in parks and gardens and sometimes grown in pots, is a plant belonging to the Scrophulariaceae family. During the summers of 2004 and 2005, symptoms of a root rot were observed in some private gardens located in Biella Province (northern Italy). The first symptoms resulted in stunting, leaf discoloration followed by wilt, root and crown rot, and eventually, plant death. The diseased tissue was disinfested for 1 min in 1% NaOCl and plated on a semiselective medium for Oomycetes (4). The microorganism consistently isolated from infected tissues, grown on V8 agar at 22°C, produced hyphae with a diameter ranging from 4.7 to 5.2 μm. Sporangia were papillate, hyaline, measuring 43.3 to 54.4 × 26.7 to 27.7 μm (average 47.8 × 27.4 μm). The papilla measured from 8.8 to 10.9 μm. These characteristics were indicative of a Phytophthora species. The ITS region (internal transcribed spacer) of rDNA was amplified using primers ITS4/ITS6 (3) and sequenced. BLASTn analysis (1) of the 800 bp obtained showed a 100% homology with Phytophthora citrophthora (R. & E. Sm.) Leonian. The nucleotide sequence has been assigned GenBank Accession No. DQ384611. For pathogenicity tests, the inoculum of P. citrophthora was prepared by growing the pathogen on autoclaved wheat and hemp kernels (2:1) at 25°C for 20 days. Healthy plants of P. barbatus cv. Nano Rondo, 6 months old, were grown in 3-liter pots (one plant per pot) using a steam disinfested substrate (peat/pomix/pine bark/clay 5:2:2:1) in which 200 g of kernels per liter of substrate were mixed. Noninoculated plants served as control treatments. Three replicates were used. Plants were maintained at 15 to 20°C in a glasshouse. The first symptoms, similar to those observed in the gardens, developed 21 days after inoculation, and P. citrophthora was consistently reisolated from infected plants. Noninoculated plants remained healthy. The pathogenicity test was carried out twice with similar results. A nonspecified root and crown rot of Penstemon spp. has been reported in the United States. (2). To our knowledge, this is the first report of P. citrophthora on P. barbatus in Italy as well as in Europe. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997 (2) F. E. Brooks and D. M. Ferrin. Plant Dis. 79:212, 1995. (3) D. E. L. Cooke and J. M. Duncan. Mycol. Res. 101:667, 1997. (4) H. Masago et al. Phytopathology 67:425, 1977.


Plant Disease ◽  
2009 ◽  
Vol 93 (9) ◽  
pp. 969-969
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. L. Gullino

Platycodon grandiflorum (balloon flower), a perennial plant belonging to the Campanulaceae family, is widely grown as a bedding plant in temperate gardens. This species is characterized by the ability to bloom profusely throughout the summer into early fall and for its white to blue and pink flowers. In September 2008, symptoms of a previously unknown blight were observed in six gardens located in the Biella Province of northern Italy. When the disease developed, temperatures ranged between 15 and 22°C with frequent rains (149.8 mm of rainfall registered in September 2008 by the meteorological station of Oropa, located in the same area in which the disease appeared). Initially, leaves and petioles appeared chlorotic. Subsequently, lesions developed on the stems and flowers were sometimes affected. In each garden examined, approximately 50% of the plants were affected by the disease. A soft, gray mycelium was observed on symptomatic tissues, especially the stems. Severely infected leaves and stems eventually became completely rotted and later desiccated. Diseased tissue was excised from affected leaves, immersed in a solution containing 1% sodium hypochlorite for 10 s, and then cultured on potato dextrose agar (PDA) medium. A fungus developed that produced abundant mycelium on PDA medium when incubated under constant fluorescent light at 22 ± 1°C. Numerous sclerotia were produced on PDA plates incubated for 20 days at 8 ± 1°C. Sclerotia were dark, irregular, and measured 1 to 3.5 × 0.9 to 2.5 (average 2.1 × 1.5) mm. Conidia were smooth, ash colored, unicellular, ovoid, and measured 11 to 19 × 7 to 13 (average 15 × 11) μm. These morphological features were typical of those described for Botrytis cinerea (2). The internal transcribed spacer (ITS) region of rDNA was amplified using primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 539-bp segment showed 100% similarity with the sequence of Botryotinia fuckeliana (perfect stage of B. cinerea). The nucleotide sequence has been assigned the GenBank Accession No. GQ149480. Pathogenicity tests were performed by placing 1-cm2 fragments removed from PDA cultures of B. cinerea isolated from balloon flower on leaves of healthy potted P. grandiflorum plants (4-month-old). Five fragments were placed on each plant. Plants inoculated with PDA alone served as controls. Ten plants per treatment were used. Plants were covered with plastic bags for 5 days after inoculation and maintained in a greenhouse at temperatures between 18 and 23°C. The first foliar lesions developed on leaves 3 days after inoculation, and after 5 days, 80% of the leaves were severely infected. As the infection progressed after the inoculation, the stems also became infected. Control plants remained healthy. B. cinerea was consistently reisolated from leaf and stem lesions. The pathogenicity test was completed twice. To our knowledge, this is the first report of the presence of B. cinerea on P. grandiflorum in Italy, as well as in Europe. Blight on balloon flower attributed to Botrytis spp. was previously reported in the United States (3). References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, England, 1971. (3) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989.


Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 877-877
Author(s):  
A. Garibaldi ◽  
P. Pensa ◽  
D. Bertetti ◽  
A. Poli ◽  
M. L. Gullino

During the summer of 2010, 20% of 7,000 4-month-old plants of apple cactus (Cereus peruvianus monstruosus) showed symptoms of a basal stem rot in a commercial nursery located in Liguria (northern Italy). Affected plants showed yellow orange-to-pale brown color from the crown level to the stem apex and a water-soaked rot was observed on the stem starting from the base. Brown discoloration was observed in the vascular system. Eventually stems bent, plants collapsed and died, and affected tissues dried out. A Fusarium sp. was consistently and readily isolated from symptomatic tissue on Komada selective medium. Isolates were purified and subcultured on potato dextrose agar (PDA). Single-spore cultures on PDA, Spezieller Nährstoffarmer agar (SNA) (3), and carnation leaf-piece agar (CLA) (2) were incubated at 26 ± 1°C (12-h fluorescent light, 12-h dark). On PDA, cultures produced a thick growth of white-to-pink mycelium and pale pink pigments in the agar. On SNA, cultures produced short monophialides with unicellular, ovoid-elliptical microconidia measuring 4.3 to 8.2 × 2.3 to 3.8 (average 6.0 × 2.8) μm. Chlamydospores were abundant, single or paired, terminal and intercalary, rough walled, and 6 to 8 μm in diameter. On CLA, cultures produced orange sporodochia with macroconidia that were 3 to 4 septate, nearly straight with a foot-shaped basal cell and a short apical cell, and measured 31.1 to 51.5 × 4.4 to 3.5 (average 43.2 × 3.8) μm. Such characteristics are typical of Fusarium oxysporum (3). Amplification of the ITS (internal transcribed spacer) of the rDNA using primers ITS1/ITS4 (4) yielded a 498-bp band. Sequencing and BLASTn analysis of this band showed an E-value of 0.0 with F. oxysporum. The nucleotide sequence has been assigned GenBank Accession No. JF422071. To confirm pathogenicity, five 6-month-old healthy plants of C. peruvianus monstruosus were inoculated by dipping roots in a conidial suspension (2.4 × 106 CFU/ml) of F. oxysporum isolated from affected plants. Inoculum was obtained from pure cultures of three single-spore isolates grown for 10 days on casein hydrolysate liquid medium. Roots were not wounded before the inoculation. Plants were transplanted into pots filled with steam-sterilized substrate (sphagnum peat/perlite/pine bark/clay 50:20:20:10). Five noninoculated plants served as a control. Plants were placed in a climatic chamber at 25 ± 1°C (12-h fluorescent light, 12 h-dark). Basal stem rot and vascular discoloration in the crown and stem developed within 30 days on each inoculated plant. Noninoculated plants remained healthy. F. oxysporum was consistently isolated from symptomatic plants. The pathogenicity test was conducted twice. F. oxysporum has been reported on Cereus spp. in the United States (1). To our knowledge, this is the first report of F. oxysporum on C. peruvianus monstruosus in Italy as well as in Europe. Currently, this disease is present in a few nurseries in Liguria. References: (1) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (2) N. L. Fisher et al. Phytopathology 72:151, 1982. (3) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell, Ames, IA, 2006. (4) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, 1990.


Plant Disease ◽  
2011 ◽  
Vol 95 (7) ◽  
pp. 880-880
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
M. T. Amatulli ◽  
M. L. Gullino

Aquilegia flabellata (Ranunculaceae), fan columbine, is a perennial herbaceous plant with brilliant blue-purple flowers with white petal tips that is largely present in gardens. It can also be grown for cut flower production. In September of 2008 and 2009, in a private garden located near Biella (northern Italy), a leaf blight was observed. Leaves of infected plants showed extensive, irregular, brown, necrotic lesions, which were slightly sunken with a well-defined border and surrounded by a violet-brown halo. A hole frequently appeared in the center of dried tissues. Lesions, initially measuring 0.5 mm, later expanded up to 15 mm in diameter and eventually coalesced to cover the entire leaf, which curled without falling. At a later stage, stems were also affected, causing death of the apical part of the plant. The disease affected 90% of the plants in the garden. Dark brown, subglobose pycnidia, 116 to 145 μm, containing light gray, ellipsoid, nonseptate conidia measuring 9.0 to 16.2 × 2.6 to 4.2 (average 12.7 × 3.4) μm were observed on symptomatic tissue. On the basis of these morphological characteristics, the fungus was related to the genus Phoma (2). Diseased tissue was excised from the margin of lesions, rinsed in sterile distilled water, and then cultured on potato dextrose agar (PDA) medium at 23 ± 1°C under alternating daylight and darkness (12-h light and 12-h dark). Fungal colonies produced a pale olive green, lightly floccose mycelium, generating clusters of dark olive green swollen cells. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 504-bp segment showed 100% homology with a sequence of Phoma aquilegiicola (GenBank Accession No. GU237735). The nucleotide sequence of our isolate was assigned GenBank Accession No. HM222537. Pathogenicity tests were performed by spraying a mycelium suspension of a homogenate of mycelium (1 × 105 mycelial fragments per ml) obtained from 15-day-old PDA cultures of the fungus on leaves of six healthy 6-month-old potted A. flabellata plants. Six plants inoculated with a homogenate of PDA served as controls. Plants were maintained in a greenhouse in a high humidity chamber for 7 days after inoculation at 23 ± 1°C and under high relative humidity conditions (70 to 90%). The first foliar lesions developed on leaves 4 days after inoculation. After 15 days, 80% of the leaves were severely infected. Control plants remained healthy. The organism reisolated on PDA from leaf lesions was identical in morphology to the isolate used for inoculation. The pathogenicity test was carried out twice. To our knowledge, this is the first report of the presence of P. aquilegiicola on A. flabellata in Italy. Ascochyta aquilegiae (synonym P. aquilegiicola) has been reported on A. vulgaris in Germany (4) and Aquilegia spp. in the United States (3). Currently, the economic importance of this disease is limited, but may become a more significant problem if the use of A. flabellata in gardens increases. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) G. H. Boerema et al. Phoma Identification Manual. Differentiation of Specific and Infra-Specific Taxa in Culture. CABI Publishing, Wallingford, UK, 2004. (3) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989. (4) R. Laubert. Gartenwelt 34:621, 1930.


Plant Disease ◽  
2009 ◽  
Vol 93 (6) ◽  
pp. 672-672 ◽  
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
P. Pensa ◽  
M. L. Gullino

Lampranthus sp. N.B. Brown (figmarigold) of the Aizoaceae family is used as groundcover in gardens. In October of 2008, severe outbreaks of a previously unknown rot were observed in a nursery located in Liguria, near Savona (northern Italy), on 35-day-old rooted cuttings grown in a peat substrate. Approximately 50% of rooted cuttings of red-flowered cultivars were affected. Lesions on collars and young stems were brown, water soaked, and soft. Plants eventually collapsed as roots rotted. Thin, aerial hyphae were visible on the surface of the stems and substrate. Later, a thick, light yellow, mycelial mat surrounded infected plants. Tissue fragments were excised from the margins of the lesions, dipped in a solution containing 1% sodium hypochlorite, and plated on potato dextrose agar and a medium selective for Oomycetes (4). Plates were incubated under constant fluorescent light at 23 ± 1°C for 4 to 5 days. Hyphae of five isolates grown on V8 medium were aseptate and 4.2 to 7.9 (average 6.2) μm wide. Sporangia consisted of complexes of swollen hyphal branches. Oogonia were globose, smooth, and 23.5 to 28.0 (average 25.9) μm in diameter. Antheridia were barrel shaped, intercalary, and diclinous. Oospores were globose and 19.4 to 23.6 (average 21.4) μm in diameter. The internal transcribed spacer (ITS) region of rDNA of a single isolate (DB24112008) was amplified with primers ITS4/ITS6 and sequenced. A BLAST analysis (1) in GenBank of the 1,074-bp segment showed a 100% homology with the sequence of Pythium aphanidermatum (Accession No. EU245039). The nucleotide sequence has been assigned the GenBank Accession No. FJ492745. Pathogenicity tests were performed twice on a red-flower cultivar of a Lampranthus sp. grown in 1-liter pots containing a peat moss substrate infested with wheat and hemp kernels colonized with one isolate of P. aphanidermatum at a rate of 20 g/liter. Ten plants were grown in infested media and 10 plants were grown in noninfested media. Greenhouse temperatures were 18 to 24°C. The first symptoms of stem and root rot developed 15 days later, while control plants remained healthy. P. aphanidermatum was consistently reisolated from the lesions. To our knowledge, this is the first report of P. aphanidermatum on a Lampranthus sp. in Italy. The disease has been reported in Japan (3) in 2008, while in the United States, a Pythium sp. was reported on L. aureus and L. glomeratus (2). Currently, the economic importance of Pythium rot on figmarigold in Italy is still limited. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. F. Farr et al. Fungi on Plants and Products in the United States. The American Phytopathological Society, St Paul, MN, 1989. (3) H. Kawarazachi et al. J. Gen. Plant Pathol. 74:94, 2008. (4) H. Masago et al. Phytopathology, 67, 425, 1977.


Plant Disease ◽  
2010 ◽  
Vol 94 (5) ◽  
pp. 638-638
Author(s):  
A. Garibaldi ◽  
D. Bertetti ◽  
C. Pellegrino ◽  
M. L. Gullino

Campanula lactiflora (milky bellflower), a perennial herbaceous plant in the Campanulaceae, is used in park and gardens and sometimes cultivated for cut flower production. In June 2008, a previously unknown leaf spot was observed on C. lactiflora ‘New Hybrids’ plants from an experimental nursery located near Carmagnola (Torino, northern Italy). Leaves of infected plants showed extensive and irregular, dark brown, necrotic lesions that were slightly sunken with well-defined borders. Lesions initially ranged from 0.5 to 3 mm, eventually coalesced, and covered the entire leaf. Black pycnidia (107 to 116 μm in diameter) containing hyaline, ellipsoid, nonseptate conidia measuring 3.7 to 4.7 × 1.2 to 2.0 (average 4.3 × 1.6) μm were observed. On the basis of these morphological characteristics, the fungal causal agent of the disease could be related to the genus Phoma. In some cases, the basal leaves turned completely necrotic and the plant died. The disease affected 50% of plants. Diseased tissue was excised, immersed in a solution containing 1% sodium hypochlorite for 2 to 3 s, rinsed in water, and then cultured on potato dextrose agar (PDA) medium. A fungus developed that produced a greenish gray mycelium with a white border when incubated under 12 h/day of fluorescent light at 22 to 25°C. The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLAST analysis (1) of the 459-bp segment showed a 100% similarity with the sequence of a Didymella sp. (synonym Mycosphaerella), anamorphic stage of Phoma spp. The nucleotide sequence has been assigned GenBank Accession No. GU128503. Pathogenicity tests were performed by placing 8-mm-diameter mycelial disks removed from PDA cultures of the fungus isolated from infected plants on leaves of healthy potted 4-month-old C. lactiflora ‘New Hybrids’ plants. Eight disks were placed on each plant. Plants inoculated with PDA alone served as controls. Six plants per treatment were used. Plants were covered with plastic bags for 4 days after inoculation and maintained in a growth chamber with daily average temperatures ranging between 23 and 24°C. The first foliar lesions developed on leaves 5 days after inoculation, and after 8 days, 80% of leaves were severely infected. Control plants remained healthy. A Didymella sp. was consistently reisolated from leaf lesions. The pathogenicity test was completed twice. To our knowledge, this is the first report of the presence of a Didymella sp. on C. lactiflora in Italy. Mycosphaerella campanulae and M. minor were reported on C. americana and C. lasiocarpa in the United States (2). The economic importance of the disease currently is limited, but could become a more significant problem in the future if the cultivation of this species becomes more widespread. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St. Paul, MN, 1989.


Plant Disease ◽  
1998 ◽  
Vol 82 (8) ◽  
pp. 959-959 ◽  
Author(s):  
L. Riccioni ◽  
G. Conca ◽  
G. L. Hartman

Anthracnose symptoms were observed on soybean (Glycine max (L.) Merr.) cv. Yale in Illinois in September 1996. Lower stems were girdled by lesions that contained black fungal stroma. Colletotrichum coccodes (Wallr.) S. J. Hughes was isolated from surface-sterilized portions of diseased stems incubated on potato dextrose agar (PDA). Cultures produced abundant black sclerotia and acervuli with setae. Acervuli produced straight and fusiform conidia (15 to 23 × 3 to 4 μm) in honey-colored masses. Ovate or long clavate appressoria were formed on slide microcultures. Pathogenicity tests were carried out in the greenhouse on soybean plants, cvs. Panda and Pony at the V4 growth stage, by (i) spraying a conidial suspension (2 ×106 conidia per ml) on seedlings and (ii) placing a mycelial PDA plug above the first two nodes of the stem, previously wounded with a sterile needle. Plain sterile water and plugs without mycelia were used as controls. Six plants per cultivar and per treatment were used. Plants were covered with polyethylene bags for 3 days. Anthracnose symptoms gradually appeared near maturity and plants senesced prematurely with both inoculation methods. Averaged over both cultivars, 100 and 50% of the plants showed symptoms when inoculated with a conidial suspension and mycelial plugs, respectively. Control plants did not have any symptoms. C. coccodes was consistently reisolated from stems, leaves, petioles, and pod peduncles with symptoms, and was not reisolated from noninoculated plants. Seeds collected from plants inoculated with either method showed infection rates up to 14 and 8% on cvs. Panda and Pony, respectively, while seeds collected from control plants showed 0% infection rate. The most common pathogen associated with soybean anthracnose is C. truncatum (Schwein.) Andrus and W. D. Moore, but other species have been reported to cause anthracnose. C. coccodes was reported on soybean in Italy (1). This pathogen has a wide host range and causes serious damage, mostly on solanaceous crops. This is the first report of the presence of the pathogen on soybean in the United States. Reference: (1) G. Conca et al. Petria 4:193, 1994.


Sign in / Sign up

Export Citation Format

Share Document