scholarly journals Association of a Disease Complex Involving a Begomovirus, DNA 1 and a Distinct DNA Beta with Leaf Curl Disease of Okra in Pakistan

Plant Disease ◽  
2001 ◽  
Vol 85 (8) ◽  
pp. 922-922 ◽  
Author(s):  
S. Mansoor ◽  
I. Amin ◽  
M. Hussain ◽  
Y. Zafar ◽  
S. Bull ◽  
...  

Okra leaf curl disease (OLCD), characterized by either upward or downward leaf curl and stunted plant growth, is one of the major diseases of okra (Hibiscus esculentis L.) in Pakistan. OLCD is transmitted by the whitefly Bemisia tabaci and is suspected of being associated with a whitefly-transmitted geminivirus (Genus Begomovirus). Total DNAs isolated from both symptomatic and healthy okra plants collected from several locations in Pakistan were resolved on agarose gels and blotted to nylon membranes. A full-length DNA A clone of Cotton leaf curl virus (CLCuV) from Pakistan (2) was labeled with 32PdCTP and used as a probe at medium stringency. The probe detected the presence of characteristic geminivirus DNA forms in infected plants, while no hybridization was observed to healthy plant extracts, confirming the association of a begomovirus with OLCD. Degenerate oligonucleotide primers based on conserved sequences of DNA B components of begomoviruses were used in PCR for the detection of a potential DNA B (3). No amplification was observed with these primers from okra plants, while amplification of a product of expected size was obtained from plants infected with African cassava mosaic virus, suggesting the lack of a genomic component equivalent to DNA B. We have reported previously that monopartite begomoviruses on cotton and Ageratum conyzoides in Pakistan are associated with a disease complex involving a DNA component termed DNA 1, which shows homology to components of nanoviruses that encode the replication-associated protein (2). Recently, another molecule, DNA beta, has been identified, associated with Ageratum yellow vein disease from Singapore (4) and with cotton leaf curl disease (CLCuD) from Pakistan (1). These molecules are DNAs satellite and are essential for the development of typical disease symptoms in their respective hosts. Duplicate blots were probed for the presence of DNAs homologous to DNA 1 and DNA beta (using full-length clones of these molecules isolated from CLCuD originating from Pakistan [1,2]) and washed at medium stringency. The probes detected bands hybridizing to DNA 1 in extracts from infected okra plants but not DNA beta. No hybridizing bands were detected for either probe in extracts from healthy okra. A pair of primers, designed to conserved sequences in DNA beta molecules (4), were used in PCR for the amplification of DNA beta from symptomatic plants. The use of these primers amplified a product of the expected size (approximately 1.35 kb) from extracts of infected okra plants. The amplified DNA was cloned in TA cloning vector and labeled with 32PdCTP. The use of this as a probe detected the presence of a hybridizing band in infected okra plants, while no signal was observed in extracts from cotton plants showing symptoms of CLCuD. These results show that OLCD in Pakistan is associated with a DNA beta molecule that is distinct from that reported on cotton and Ageratum. In particular, the DNA beta of CLCuD and OLCD originating from Pakistan are sufficiently diverse not to cross-hybridize under the conditions used here, and are most likely different disease complexes. To our knowledge this is the first report of the association of a whitefly-transmitted begomovirus/DNA 1/DNA beta complex with okra leaf curl disease. References: (1) R. W. Briddon et al. Virology, 2001 (In press). (2) S. Mansoor et al. Virology 259:190, 1999. (3) M R. Rojas et al. Plant Dis. 77: 340, 1993. (4) K. Saunders et al. PNAS 97:6890, 2000.

2021 ◽  
Author(s):  
Judith K. Brown

Abstract Leaf curl disease of cotton caused by the CLCuD-complex of begomoviruses is endemic to Pakistan and India and perhaps other nearby locales in south Asia. It has been introduced from there to China and the Philippines on ornamental plants, from where it has spread to infect cotton and okra in China. Losses are difficult to assess, but early estimates (pre-1990) range up to 20% when infection occurs early in the growing season and/or with highly susceptible cultivars Viruliferous whiteflies on infested/infected plants harbouring CLCuD-begomoviruses imported to other cotton-growing countries, in particular, are of concern in preventing introduction under optimal circumstances. No seed transmission is known to occur.


Virus Genes ◽  
2017 ◽  
Vol 53 (6) ◽  
pp. 759-761 ◽  
Author(s):  
Ishtiaq Hassan ◽  
Imran Amin ◽  
Shahid Mansoor ◽  
Rob W. Briddon

Plant Disease ◽  
2000 ◽  
Vol 84 (1) ◽  
pp. 101-101 ◽  
Author(s):  
S. Mansoor ◽  
S. H. Khan ◽  
M. Hussain ◽  
Y. Zafar ◽  
M. S. Pinner ◽  
...  

Whitefly-transmitted geminiviruses (begomoviruses) cause heavy losses to many food and fiber crops in Pakistan. Many weeds also show symptoms typical of begomoviruses. Ageratum (Ageratum conyzoides) is a common perennial weed in Pakistan, growing along irrigation canals, that often shows symptoms, such as yellow vein and mosaic, suggesting infection by a begomovirus. To confirm this, symptomatic and asymptomatic ageratum plants were collected from three locations in the Punjab Province of Pakistan, and total DNA was isolated, subjected to agarose gel electrophoresis, transferred to a nylon membrane, and Southern blotted. Total DNA isolated from cotton infected with Cotton leaf curl virus (CLCuV), tomato infected with Tomato leaf curl virus from Pakistan (TLCV-Pak), tobacco infected with African cassava mosaic virus (ACMV) from Nigeria, and healthy tobacco were included as controls. A full-length clone of CLCuV DNA A was labeled with [32P]dCTP by oligo-labeling and hybridized at medium stringency. The probe detected characteristic geminivirus DNA forms in symptomatic ageratum and plants infected with CLCuV, TLCV-Pak, and ACMV, while no signal was detected in asymptomatic ageratum from the field or healthy tobacco. To confirm infection by a begomovirus, degenerate primers WTGF (5′-GATTGTACGCGTCCDCCTTTAATTT GAAYBGG-3′), designed in the rep gene of begomoviruses, and WTGR (5′-TANACGCGTGGC TTCKRTACATGGCCTDT-3′), designed in the coat protein gene of DNA A of begomoviruses, were used in polymerase chain reaction (PCR). Degenerate primers (PBLv2040 and PCRc1) also were used in PCR (2). A product of expected size (≈1.4 kb) was obtained with DNA A primers from symptomatic ageratum, while no product was obtained with DNA B primers in the same sample. Previously we were unable to detect a DNA component equivalent to begomovirus DNA B in cotton showing symptoms of cotton leaf curl disease (1). We recently reported a novel circular DNA molecule that was approximately half as long as the full-length DNA A (CLCuV DNA-1) associated with CLCuV that share homology to plant nanoviruses (1). The supercoiled replicative form of viral DNA isolated from infected ageratum plants indicated the presence of smaller molecules, as was found in cotton leaf curl disease, suggesting that a nanovirus-like molecule might be associated with ageratum yellow vein disease. A duplicate blot of samples used in Southern hybridization with the DNA A probe was prepared, and a probe of the full-length clone of the nanovirus-like molecule (CLCuV DNA-1) was prepared as described for DNA A. The probe detected characteristic nanovirus DNA forms in ageratum with yellow vein symptoms and cotton infected with CLCuV, while no signal was detected in plants infected with TLCV-Pak or ACMV, healthy tobacco, or asymptomatic ageratum. Abutting primers PB2-F and PB2R (1), designed based on the CLCuV DNA-1 sequence, were unable to amplify a PCR product from ageratum with yellow vein symptoms, suggesting the nanovirus-like molecule associated with ageratum yellow vein disease is distinct from CLCuV DNA-1. Our results show that yellow vein disease of ageratum in Pakistan is associated with a begomovirus infection and single-stranded circular DNA molecule with similarity to CLCuV DNA-1. References: (1) S. Mansoor et al. Virology 259:190, 1999. (2) M. R. Rojas et al., Plant Dis. 77:340, 1993.


Viruses ◽  
2017 ◽  
Vol 9 (10) ◽  
pp. 280 ◽  
Author(s):  
Muhammad Zubair ◽  
Syed Zaidi ◽  
Sara Shakir ◽  
Imran Amin ◽  
Shahid Mansoor

2021 ◽  
Vol 9 (2) ◽  
pp. 304
Author(s):  
Yao Chi ◽  
Li-Long Pan ◽  
Shu-Sheng Liu ◽  
Shahid Mansoor ◽  
Xiao-Wei Wang

Cotton leaf curl Multan virus (CLCuMuV) is one of the major casual agents of cotton leaf curl disease. Previous studies show that two indigenous whitefly species of the Bemisia tabaci complex, Asia II 1 and Asia II 7, are able to transmit CLCuMuV, but the molecular mechanisms underlying the transmission are poorly known. In this study, we attempted to identify the whitefly proteins involved in CLCuMuV transmission. First, using a yeast two-hybrid system, we identified 54 candidate proteins of Asia II 1 that putatively can interact with the coat protein of CLCuMuV. Second, we examined interactions between the CLCuMuV coat protein and several whitefly proteins, including vacuolar protein sorting-associated protein (Vps) twenty associated 1 (Vta1). Third, using RNA interference, we found that Vta1 positively regulated CLCuMuV acquisition and transmission by the Asia II 1 whitefly. In addition, we showed that the interaction between the CLCuMuV coat protein and Vta1 from the whitefly Middle East-Asia Minor (MEAM1), a poor vector of CLCuMuV, was much weaker than that between Asia II 1 Vta1 and the CLCuMuV coat protein. Silencing of Vta1 in MEAM1 did not affect the quantity of CLCuMuV acquired by the whitefly. Taken together, our results suggest that Vta1 may play an important role in the transmission of CLCuMuV by the whitefly.


2021 ◽  
pp. 1-12
Author(s):  
Muhammad Salman Mubarik ◽  
Xiukang Wang ◽  
Sultan Habibullah Khan ◽  
Aftab Ahmad ◽  
Zulqurnain Khan ◽  
...  

2016 ◽  
Vol 6 ◽  
pp. 41-52 ◽  
Author(s):  
Komal Siddiqui ◽  
Shahid Mansoor ◽  
Rob W. Briddon ◽  
Imran Amin

Plant Disease ◽  
2000 ◽  
Vol 84 (7) ◽  
pp. 809-809 ◽  
Author(s):  
S. Mansoor ◽  
S. Mukhtar ◽  
M. Hussain ◽  
I. Amin ◽  
Y. Zafar ◽  
...  

The current epidemic of cotton leaf curl disease (CLCuD) in Pakistan started in 1988 with the natural host range limited to a few plant species in the family Malvaceae. However, we have observed expansion in the host range of the virus, and several non-Malvaceous plants were found to be infected with the virus. Characteristic symptoms of CLCuD such as leaf curl and enations have been observed on radish plants, primarily in kitchen gardens. However, in 1999, levels of infection of 10 to 90% were observed both in commercial fields and kitchen gardens in the Punjab province of Pakistan. Both symptomatic and nonsymptomatic samples were collected from five different locations. Total DNA was isolated, dot-blotted on nylon membrane, and a full-length clone corresponding to DNA A of cotton leaf curl virus was labeled with 32P dCTP and used as a probe for the detection of a begomovirus. Strong signals were observed in symptomatic plants while no signals were observed in nonsymptomatic plants. Infection with a begomovirus was further confirmed by polymerase chain reaction (PCR) using degenerate primers for DNA A (1). Primers specific for the two distinct begomoviruses associated with CLCuD were also used in PCR reactions (2), and products of the expected size were obtained from all symptomatic samples, confirming infection with begomoviruses similar to those associated with CLCuD. A full-length probe of a nanovirus-like molecule associated with cotton leaf disease (3), called DNA 1 was labeled with 32P dCTP and detected the virus only in symptomatic plants. Similarly, primers specific for DNA 1 (3) amplified a product of expected size when used in PCR. On the basis of symptomatology and the detection of specific viral components associated with the disease, we confirmed that radish plants are infected with Cotton leaf curl virus (CLCuV). Since radish is a short duration crop, infection of CLCuV in radish may not serve as a direct source of infection for the next cotton crop. However, it is a potential threat to tomato crops which overlap with radish in the Punjab province. The detection of CLCuD in radish is another example of the mobilization of begomoviruses to previously unknown hosts. References: (1) M. R. Rojas et al. Plant Dis. 77:340, 1993. (2) S. Mansoor et al. Pak. J. Bot. 31:115, 1999. (3) Mansoor et al. Virology 259:190, 1999.


Sign in / Sign up

Export Citation Format

Share Document