scholarly journals In Situ Immunoassay (ISIA) of Field Grapefruit Trees Inoculated with Mild Isolates of Citrus tristeza virus Indicates Mixed Infections with Severe Isolates

Plant Disease ◽  
2002 ◽  
Vol 86 (5) ◽  
pp. 458-461 ◽  
Author(s):  
Youjian Lin ◽  
Phyllis A. Rundell ◽  
Charles A. Powell

Ten grapefruit trees that had been inoculated with a mild isolate of Citrus tristeza virus (CTV) and maintained in the field for 18 years were found in a previous study to be declining and infected with severe isolates of CTV, or symptomless and infected with mild isolates of CTV, using enzyme-linked immunosorbent assay (ELISA). They were assayed with an in situ immunoassay (ISIA) procedure using monoclonal antibodies 17G11 (reacts with most Florida isolates of CTV) and MCA13 (reacts with severe, but not Florida mild isolates of CTV). All the grapefruit trees were 17G11 positive by ELISA and ISIA. The five trees that showed moderate decline symptoms were MCA13 positive by ELISA and ISIA. The five symptomless trees were MCA13 negative by ELISA. However, four of the five symptomless trees were MCA13 positive by ISIA, which showed that ISIA with MCA13 had greater sensitivity in detecting severe CTV isolates than ELISA. These results suggested that the cross-protected grapefruit trees, regardless of symptoms, were infected with both mild and severe isolates of CTV.

Plant Disease ◽  
2003 ◽  
Vol 87 (9) ◽  
pp. 1116-1118 ◽  
Author(s):  
C. A. Powell ◽  
R. R. Pelosi ◽  
P. A. Rundell ◽  
M. Cohen

A 21-year-old replicated field planting of 84 ‘Ruby Red’ grapefruit trees cross-protected with three mild isolates of Citrus tristeza virus (CTV) was assessed for decline-inducing and non-decline-inducing isolates of the virus 5 years after the brown citrus aphid (BrCA) (Toxoptera citricida Kirkaldy) first was established in the experimental area. Prior to the introduction of the BrCA, the cross-protecting mild isolates had significantly reduced detectable infection with decline-inducing isolates of CTV for 16 years (average infection of 13% in cross-protected trees compared with 67% in unprotected trees). After the introduction of the BrCA, infections with decline-inducing CTV (measured by enzyme-linked immunosorbent assay) were 57, 81, and 71% for trees protected with three mild isolates, respectively, compared with 95% in unprotected trees. These results suggest that the introduction of BrCA accelerated the breakdown of cross-protection against decline-inducing isolates of CTV in grapefruit.


Plant Disease ◽  
2011 ◽  
Vol 95 (8) ◽  
pp. 913-920 ◽  
Author(s):  
R. H. Brlansky ◽  
Avijit Roy ◽  
V. D. Damsteegt

Citrus tristeza virus (CTV) is a phloem-limited Closterovirus that produces a variety of symptoms in various Citrus spp. One of these symptoms is stem pitting (SP). SP does not occur in all Citrus spp. but when it does it may cause low tree vigor, decline, and an economic reduction in fruit size and yield. Historically, the first appearance of CTV-SP in a citrus area often occurs after the introduction of the most efficient CTV vector, the brown citrus aphid (BCA), Toxoptera citricida. Hypotheses for this association range from the introduction of these strains in new planting materials to the increased ability of BCA to transmit SP strains from existing CTV sources. It is known that CTV often exists as a complex of isolates or subisolates. Single and multiple BCA transmissions have been used to separate different genotypes or strains of CTV from mixed CTV infected plants. This study was initiated to determine what the BCA transmits when an exotic severe SP CTV isolate B12 from Brazil or B408 from Dominican Republic are mixed with a non-SP (NSP) isolate, FS627 from Florida. Biological and molecular data was generated from grafted mixtures of these isolates and their aphid-transmitted subisolates. Single-strand conformation polymorphism patterns of the 5′ terminal region of open reading frame (ORF) 1a, the overlapping region of ORF1b and ORF2, and the major coat protein gene region of NSP and SP CTV-grafted plants remained unchanged but the patterns of doubly inoculated plants varied. The haplotype diversity within SP isolates B12, B408, and mixtures of NSP and SP isolates (FS627/B12 and FS627/B408) and aphid-transmitted subisolates from doubly inoculated plants was determined by analysis of the haplotype nucleotide sequences. Aphid transmission experiments, symptoms, and molecular analyses showed that SP-CTV was more frequently transmitted with or without NSP-CTV from mixed infections.


Sign in / Sign up

Export Citation Format

Share Document