mixed infections
Recently Published Documents


TOTAL DOCUMENTS

890
(FIVE YEARS 186)

H-INDEX

49
(FIVE YEARS 6)

2022 ◽  
Vol 20 (6) ◽  
pp. 81-87
Author(s):  
N. N. Zvereva ◽  
M. A. Sayfullin ◽  
E. R. Samitova ◽  
L. N. Mazankova ◽  
V. G. Akimkin ◽  
...  

Relevance. The rapid spread of new pathogens inevitably leads to the occurrence of joint circulation with already known infectious agents, leading to the development of mixed infections. The simultaneous circulation of the pandemic coronavirus SARS-CoV-2 with a highly contagious measles virus leads to the development of mixed infections in people who have not been sick or vaccinated against measles. Aims. Review cases of co-infection with measles and COVID-19 in Moscow. Material and methods. A retrospective study of cases of measles and COVID-19 co-infection in three children with a description of the epidemiological and clinical picture of the disease. Results. In all observed children, the manifestation of the disease was typical for measles, the diagnosis of COVID-19 was established based on a laboratory study carried out in a hospital, which gave reason to count. That the infection with SARSCoV-2 occurred after the infection of children with measles. Conclusions. Different incubation periods can lead to several options for the development of co-infection. The similarity of clinical symptoms at the onset of the disease does not allow excluding a certain infection clinically, without laboratory verification.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 52
Author(s):  
Dalila Crucitti ◽  
Marco Chiapello ◽  
Daniele Oliva ◽  
Marco Forgia ◽  
Massimo Turina ◽  
...  

Wine yeasts can be natural hosts for dsRNA, ssRNA viruses and retrotransposon elements. In this study, high-throughput RNA sequencing combined with bioinformatic analyses unveiled the virome associated to 16 Saccharomyces cerevisiae and 8 non-Saccharomyces strains of oenological interest. Results showed the presence of six viruses and two satellite dsRNAs from four different families, two of which—Partitiviridae and Mitoviridae—were not reported before in yeasts, as well as two ORFan contigs of viral origin. According to phylogenetic analysis, four new putative mycoviruses distributed in Totivirus, Cryspovirus, and Mitovirus genera were identified. The majority of commercial S. cerevisiae strains were confirmed to be the host for helper L-A type totiviruses and satellite M dsRNAs associated with the killer phenotype, both in single and mixed infections with L-BC totiviruses, and two viral sequences belonging to a new cryspovirus putative species discovered here for the first time. Moreover, single infection by a narnavirus 20S-related sequence was also found in one S. cerevisiae strain. Considering the non-Saccharomyces yeasts, Starmerella bacillaris hosted four RNAs of viral origin—two clustering in Totivirus and Mitovirus genera, and two ORFans with putative satellite behavior. This study confirmed the infection of wine yeasts by viruses associated with useful technological characteristics and demonstrated the presence of complex mixed infections with unpredictable biological effects.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2520
Author(s):  
Gloria Patricia Barrera ◽  
Laura Fernanda Villamizar ◽  
Gustavo Adolfo Araque ◽  
Juliana Andrea Gómez ◽  
Elsa Judith Guevara ◽  
...  

Spodoptera ornithogalli (Guenée) (Lepidoptera: Noctuidae) is an important pest in different crops of economic relevance in America. For its control, strategies that include chemicals are usually used; so, the description of entomopathogens would be very useful for the formulation of biopesticides. In this regard, two different baculoviruses affecting S. ornithogalli were isolated in Colombia, with one of them being an NPV and the other a GV. Ultrastructural, molecular, and biological characterization showed that both isolates possess the 38 core genes and are novel species in Baculoviridae, named as Spodoptera ornithogalli nucleopolyhedrovirus (SporNPV) and Spodoptera ornithogalli granulovirus (SporGV). The bioassays carried out in larvae of S. ornithogalli and S. frugiperda showed infectivity in both hosts but being higher in the first. In addition, it was observed that SporGV potentiates the insecticidal action of SporNPV (maximum value in ratio 2.5:97.5). Both viruses are individually infective but coexist in nature, producing mixed infections with a synergistic effect that improves the performance of the NPV and enables the transmission of the GV, which presents a slowly killing phenotype.


mSphere ◽  
2021 ◽  
Author(s):  
Nuria Lozano ◽  
Val F. Lanza ◽  
Julia Suárez-González ◽  
Marta Herranz ◽  
Pedro J. Sola-Campoy ◽  
...  

We present a new strategy to identify mixed infections and minority variants in Mycobacterium tuberculosis by whole-genome sequencing. The objective of the strategy is the direct detection in patient sputum; in this way, minority populations of resistant strains can be identified at the time of diagnosis, facilitating identification of the most appropriate treatment for the patient from the first moment.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Ye-In Oh ◽  
Kyoung-Won Seo ◽  
Do-Hyung Kim ◽  
Doo-Sung Cheon

Abstract Background Diarrhea is one of the most common clinical symptoms in cats and can be caused by infectious pathogens and investigation of the prevalence, co-infection and seasonality of enteropathogens are not well-established in diarrheic cats. Results Fecal samples of 1620 diarrheic cats were collected and enteropathogens were detected using real-time PCR. We retrospectively investigated the clinical features, total/seasonal prevalence, and infection patterns of enteropathogens. The positive infection rate was 82.59%. Bacterial, viral, and protozoal infections accounted for 49.3, 37.57, and 13.13% of cases, respectively. Feline enteric coronavirus (FECV) was the most common pathogen (29.37%), followed by Clostridium (C.) perfringens, Campylobacter (C.) coli, feline parvovirus, and Tritrichomonas foetus. The seasonality of enteropathogens was observed with peaks as follows: bacterial infections peaked in October, viral infections peaked in November, and protozoal infections peaked in August. Viral and protozoal infections showed differences in prevalence according to patient age. In the infection patterns, the ratios of single infections, mixed infections, and co-infections were 35.72, 9.87, and 54.41%, respectively. FECV was predominant in single infections. The most common patterns of multiple infections were C. perfringens and C. coli in mixed infections and C. perfringens and FECV in co-infections. Conclusions Infection patterns differed according to the enteropathogen species, seasonality, and age distribution in cats. The results of this study might be helpful to understand in clinical characteristics of feline infectious diarrhea. In addition, continued monitoring of feline enteropathogens is required.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sisi Luo ◽  
Zhixun Xie ◽  
Meng Li ◽  
Dan Li ◽  
Liji Xie ◽  
...  

AbstractLow pathogenic avian influenza viruses (LPAIVs) have been widespread in poultry and wild birds throughout the world for many decades. LPAIV infections are usually asymptomatic or cause subclinical symptoms. However, the genetic reassortment of LPAIVs may generate novel viruses with increased virulence and cross-species transmission, posing potential risks to public health. To evaluate the epidemic potential and infection landscape of LPAIVs in Guangxi Province, China, we collected and analyzed throat and cloacal swab samples from chickens, ducks and geese from the live poultry markets on a regular basis from 2016 to 2019. Among the 7,567 samples, 974 (12.87%) were LPAIVs-positive, with 890 single and 84 mixed infections. Higher yearly isolation rates were observed in 2017 and 2018. Additionally, geese had the highest isolation rate, followed by ducks and chickens. Seasonally, spring had the highest isolation rate. Subtype H3, H4, H6 and H9 viruses were detected over prolonged periods, while H1 and H11 viruses were detected transiently. The predominant subtypes in chickens, ducks and geese were H9, H3, and H6, respectively. The 84 mixed infection samples contained 22 combinations. Most mixed infections involved two subtypes, with H3 + H4 as the most common combination. Our study provides important epidemiological data regarding the isolation rates, distributions of prevalent subtypes and mixed infections of LPAIVs. These results will improve our knowledge and ability to control epidemics, guide disease management strategies and provide early awareness of newly emerged AIV reassortants with pandemic potential.


Author(s):  
Colleen M. Leonard ◽  
Hussein Mohammed ◽  
Mekonnen Tadesse ◽  
Jessica N. McCaffery ◽  
Doug Nace ◽  
...  

Plasmodium falciparum and Plasmodium vivax are co-endemic in Ethiopia. This study investigated whether mixed infections were missed by microscopy from a 2017 therapeutic efficacy study at two health facilities in Ethiopia. All patients (N = 304) were initially classified as having single-species P. falciparum (n = 148 samples) or P. vivax infections (n = 156). Dried blood spots were tested for Plasmodium antigens by bead-based multiplex assay for pan-Plasmodium aldolase, pan-Plasmodium lactate dehydrogenase, P. vivax lactate dehydrogenase, and histidine-rich protein 2. Of 304 blood samples, 13 (4.3%) contained both P. falciparum and P. vivax antigens and were analyzed by polymerase chain reaction for species-specific DNA. Of these 13 samples, five were confirmed by polymerase chain reaction for P. falciparum/P. vivax co-infection. One sample, initially classified as P. vivax by microscopy, was found to only have Plasmodium ovale DNA. Plasmodium falciparum/P. vivax mixed infections can be missed by microscopy even in the context of a therapeutic efficacy study with multiple trained readers.


2021 ◽  
Author(s):  
Vinodh Kandavalli ◽  
Praneeth Karempudi ◽  
Jimmy Larsson ◽  
Johan Elf

Antimicrobial resistance is an increasing problem globally. Rapid antibiotic susceptibility testing (AST) is urgently needed in the clinic to enable personalized prescription in high-resistance environments and limit the use of broad-spectrum drugs. Previously we have described a 30 min AST method based on imaging of individual bacterial cells. However, current phenotypic AST methods do not include species identification (ID), leaving time-consuming plating or culturing as the only available option when ID is needed to make the sensitivity call. Here we describe a method to perform phenotypic AST at the single-cell level in a microfluidic chip that allows subsequent genotyping by in situ FISH. By stratifying the phenotypic AST response on the species of individual cells, it is possible to determine the susceptibility profile for each species in a mixed infection sample in 1.5 h. In this proof-of-principle study, we demonstrate the operation with four antibiotics and a mixed sample with four species.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mandy Herzig ◽  
Pavlo Maksimov ◽  
Christoph Staubach ◽  
Thomas Romig ◽  
Jenny Knapp ◽  
...  

Abstract Background Alveolar echinococcosis (AE) is a clinically serious zoonosis caused by the fox tapeworm Echinococcus multilocularis. We studied the diversity and the distribution of genotypes of E. multilocularis isolated from foxes in Brandenburg, Germany, and in comparison to a hunting ground in North Rhine-Westphalia. Methods Echinococcus multilocularis specimens from 101 foxes, 91 derived from Brandenburg and 10 derived from North Rhine-Westphalia, were examined. To detect potential mixed infections with different genotypes of E. multilocularis, five worms per fox were analyzed. For genotyping, three mitochondrial markers, namely cytochrome c oxidase subunit 1 (Cox1), NADH dehydrogenase subunit 1 (Nad1), and ATP synthase subunit 6 (ATP6), and the nuclear microsatellite marker EmsB were used. To identify nucleotide polymorphisms, the mitochondrial markers were sequenced and the data were compared, including with published sequences from other regions. EmsB fragment length profiles were determined and confirmed by Kohonen network analysis and grouping of Sammon’s nonlinear mapping with k-means clustering. The spatial distribution of genotypes was analyzed by SaTScan for the EmsB profiles found in Brandenburg. Results With both the mitochondrial makers and the EmsB microsatellite fragment length profile analyses, mixed infections with different E. multilocularis genotypes were detected in foxes from Brandenburg and North Rhine-Westphalia. Genotyping using the mitochondrial markers showed that the examined parasite specimens belong to the European haplotype of E. multilocularis, but a detailed spatial analysis was not possible due to the limited heterogeneity of these markers in the parasite population. Four (D, E, G, and H) out of the five EmsB profiles described in Europe so far were detected in the samples from Brandenburg and North Rhine-Westphalia. The EmsB profile G was the most common. A spatial cluster of the E. multilocularis genotype with the EmsB profile G was found in northeastern Brandenburg, and a cluster of profile D was found in southern parts of this state. Conclusions Genotyping of E. multilocularis showed that individual foxes may harbor different genotypes of the parasite. EmsB profiles allowed the identification of spatial clusters, which may help in understanding the distribution and spread of the infection in wildlife, and in relatively small endemic areas. Graphical Abstract


2021 ◽  
Vol 9 (10) ◽  
pp. 2123
Author(s):  
Nandhitha Venkatesh ◽  
Max J. Koss ◽  
Claudio Greco ◽  
Grant Nickles ◽  
Philipp Wiemann ◽  
...  

In order to gain a comprehensive understanding of plant disease in natural and agricultural ecosystems, it is essential to examine plant disease in multi-pathogen–host systems. Ralstonia solanacearum and Fusarium oxysporum f. sp. lycopersici are vascular wilt pathogens that can result in heavy yield losses in susceptible hosts such as tomato. Although both pathogens occupy the xylem, the costs of mixed infections on wilt disease are unknown. Here, we characterize the consequences of co-infection with R. solanacearum and F. oxysporum using tomato as the model host. Our results demonstrate that bacterial wilt severity is reduced in co-infections, that bikaverin synthesis by Fusarium contributes to bacterial wilt reduction, and that the arrival time of each microbe at the infection court is important in driving the severity of wilt disease. Further, analysis of the co-infection root secretome identified previously uncharacterized secreted metabolites that reduce R. solanacearum growth in vitro and provide protection to tomato seedlings against bacterial wilt disease. Taken together, these results highlight the need to understand the consequences of mixed infections in plant disease.


Sign in / Sign up

Export Citation Format

Share Document