scholarly journals First Report of Grapevine “Bois Noir” Disease and a New Phytoplasma Infecting Solanaceous Plants in Lebanon

Plant Disease ◽  
2002 ◽  
Vol 86 (6) ◽  
pp. 697-697 ◽  
Author(s):  
E. Choueiri ◽  
F. Jreijiri ◽  
S. El Zammar ◽  
E. Verdin ◽  
P. Salar ◽  
...  

During a 2001 survey to evaluate the incidence of phytoplasma diseases in Lebanon, samples were collected from plants showing symptoms suggestive of phytoplasmal infections. Samples were also collected from symptomless plants. Sampled hosts from the Bekaa Valley included: 3 samples of tomato (Lycopersicum esculentum), 4 samples of pepper (Capsicum annuum), 10 samples of grapevine (Vitis vinifera) cvs. Chardonnay and Alicante Bouschet; 7 samples of ornamental periwinkle (Catharantus roseus) from the Tyr area; and 4 samples of weeds (Lactucca serratia). DNA was extracted from leaf midveins of diseased and symptomless plants, and from healthy periwinkle, grapevine, tomato, and pepper plants grown in a greenhouse in France. Polymerase chain reaction (PCR) with universal primers for the amplification of phytoplasma ribosomal RNA genes (3) only produced a 1.8-kbp rDNA fragment from symptomatic samples. The amplified DNAs were analyzed by restriction fragment length polymorphism (RFLP) with several restriction enzymes and sequenced. The analysis showed extracts of diseased grapevines, and two periwinkle plants had identical rDNA sequences and restriction profiles of the stolbur cluster (4). The sequences had 98% identity with two European stolbur isolates from grapevine and periwinkle (GenBank Accession Nos. X76428 and AF248959, respectively). In grapevine, the disease induced by the stolbur phytoplasma is “bois noir.” Bois noir is present in Europe where its incidence is predominant in northern vineyards and has been reported in Israel (2). To our knowledge, this is the first report of the stolbur/bois noir disease in Lebanon. In tomato and pepper, the restriction profiles and sequences of the phytoplasma rDNAs were identical. Sequencing and phylogenetic analysis indicated that the phytoplasma belonged to the clover proliferation (CP) cluster, as does the eggplant little leaf phytoplasma of solanaceous plants in Asia. They differed from the stolbur phytoplasma, known to infect solanaceaous plants in Europe. Lastly, a phytoplasma belonging to the pigeon pea witches' broom (PPWB) cluster was found in L. serratia and in some periwinkle plants. A phytoplasma of the PPWB cluster was recently shown to be responsible for an emerging lethal disease of almond trees in Lebanon (1). References: (1) E. Choueiri et al. Plant Dis. 85:802, 2001. (2) X. Daire et al. Vitis 36:53, 1997. (3) B. Schneider et al. Pages 369–380 in: Molecular and Diagnostic Procedures in Mycoplasmology. Academic Press, NY, 1995. (4) E. Seemüller et al. J. Plant Pathol. 80:3, 1998.

Plant Disease ◽  
2001 ◽  
Vol 85 (7) ◽  
pp. 802-802 ◽  
Author(s):  
E. Choueiri ◽  
F. Jreijiri ◽  
S. Issa ◽  
E. Verdin ◽  
J. Bové ◽  
...  

During a survey conducted in October 1999 to establish the sanitary status of stone fruits in Lebanon, almond trees with symptoms of leaf yellowing, shoot proliferation, and dieback were observed in the Bekaa region. Because such symptoms are often associated with phytoplasma infections, samples were collected for analysis by PCR using universal primers for amplification of phytoplasma ribosomal RNA genes (2). DNA was extracted from the leaf midveins and/or bark phloem tissue from nine symptomatic trees and one symptomless tree in four different orchards as well as from healthy almond trees collected in France. PCR resulted in amplification of an expected 1.8 kbp rDNA fragment from all symptomatic samples but not from the healthy or symptomless samples. For characterization, the amplified DNA was analyzed by RFLP. Even though the restriction profiles were different from those published for other phytoplasmas and in particular from those infecting almond trees in Western Europe (1), sequence analysis of the amplified DNA revealed that it belongs to the pigeon pea witches' broom cluster (PPWB) (2). This is the first report of a phytoplasma infection in Lebanon and the first report for a PPWB group phytoplasma in almond trees. References: (1) W. Jarausch et al. J. Plant Pathol. 104:17–27, 1998. (2) B. Schneider et al. 1995. Molecular and diagnostic procedures in Mycoplasmology Vol. 1, 369–380, S. Razin and J. G. Tully, eds.


Plant Disease ◽  
2006 ◽  
Vol 90 (7) ◽  
pp. 973-973 ◽  
Author(s):  
N. A. Al-Saady ◽  
A. M. Al-Subhi ◽  
A. Al-Nabhani ◽  
A. J. Khan

Chickpea (Cicer arietinum), locally known as “Dungo”, is grown for legume and animal feed mainly in the interior region of Oman. During February 2006, survey samples of chickpea leaves from plants showing yellows disease symptoms that included phyllody and little leaf were collected from the Nizwa Region (175 km south of Muscat). Total nucleic acid was extracted from asymptomatic and symptomatic chickpea leaves using a cetyltrimethylammoniumbromide method with modifications (3). All leaf samples from eight symptomatic plants consistently tested positive using a polymerase chain reaction assay (PCR) with phytoplasma universal primers (P1/P7) that amplify a 1.8-kb phytoplasma rDNA product and followed by nested PCR with R16F2n/R16R2 primers yielding a product of 1.2 kb (2). No PCR products were evident when DNA extracted from healthy plants was used as template. Restriction fragment length polymorphism analysis of nested PCR products by separate digestion with Tru9I, HaeIII, HpaII, AluI, TaqI, HhaI, and RsaI restriction enzymes revealed that a phytoplasma belonging to group 16SrII peanut witches'-broom group (2) was associated with chickpea phyllody and little leaf disease in Oman. Restriction profiles of chickpea phytoplasma were identical with those of alfalfa witches'-broom phytoplasma, a known subgroup 16SrII-B strain (3). To our knowledge, this is the first report of phytoplasma infecting chickpea crops in Oman. References: (1) A. J. Khan et al. Phytopathology, 92:1038, 2002. (2). I.-M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998 (3) M. A. Saghai-Maroof et al. Proc. Natl. Acad. Sci. USA. 81:8014, 1984.


Plant Disease ◽  
2001 ◽  
Vol 85 (4) ◽  
pp. 447-447 ◽  
Author(s):  
I.-M. Lee ◽  
R. A. Dane ◽  
M. C. Black ◽  
Noel Troxclair

In early spring 2000 carrot crops in southwestern Texas were severely infected by an outbreak of phyllody associated with aster yellows phytoplasma. Cabbage crops that had been planted adjacent to these carrot fields began to display previously unobserved symptoms characteristic of phytoplasma infection. Symptoms included purple discoloration in leaf veins and at the outer edges of leaves on cabbage heads. Proliferation of sprouts also occurred at the base of the stem and between leaf layers of some plants, and sprouts sometimes continued to proliferate on extended stems. About 5% of cabbage plants in the field exhibited these symptoms. Two symptomless and four symptomatic cabbage heads were collected in early April from one cabbage field. Veinal tissues were stripped from each sample and used for total nucleic acid extraction. To obtain specific and sufficient amount of PCR products for analysis, nested PCR was performed by using primer pairs (first with P1/P7 followed by R16F2n/R16R2) (1,2) universal for phytoplasma detection. A specific 16S rDNA fragment (about 1.2 kb) was strongly amplified from the four symptomatic but not from the two asymptomatic samples. The nested PCR products obtained from the four symptomatic samples were then analyzed by restriction fragment length polymorphism (RFLP) using the restriction enzymes MseI, HhaI, and HpaII, and the RFLP patterns were compared to the published patterns of known phytoplasmas (1). The resulting RFLP patterns were identical to those of a phytoplasma belonging to subgroup B of the aster yellows phytoplasma group (16SrI). These RFLP patterns were also evident in putative restriction sites observed in a 1.5 kbp nucleotide sequence of the 16S rDNA. This is the first report of aster yellows phytoplasma associated disease symptoms in cabbage in Texas. The occurrence of cabbage proliferation coincided with the presence of high populations of the insect vector, aster leafhopper. References: (1) I.-M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998. (2) B. Schneider et al. 1995. Molecular and Diagnostic Procedures in Mycoplasmology, Vol. I. Academic Press, San Diego, CA.


Plant Disease ◽  
2005 ◽  
Vol 89 (7) ◽  
pp. 774-774 ◽  
Author(s):  
B. Duduk ◽  
M. Ivanović ◽  
A. Obradović ◽  
S. Paltrinieri ◽  
A. Bertaccini

During August of 2004, pear (Pyrus communis L.) plants with typical symptoms of pear decline (PD) were observed in orchards in central Serbia. The affected plants showed premature reddening and upward rolling of leaves that often showed down-turned petioles. In some cases, premature defoliation was observed. Although a similar decline of pear was observed earlier, until now, the causal agent had not been identified. DNA was extracted with a chloroform/phenol procedure from fresh leaf midribs and branch phloem scrapes of four symptomatic and one asymptomatic pear plants separately. A nested polymerase chain reaction assay (PCR) was used for phytoplasma detection (first PCR round with P1/P7 (4) phytoplasma universal primer pair, followed by nested PCR with group 16SrX specific primers f01/r01) (3). With these primers, the expected products from phloem scrapes and midrib extracts of symptomatic plant samples were obtained. Restriction fragment length polymorphism (RFLP) analyses of the f01/r01 amplicon, with RsaI and SspI restriction enzymes, discriminating among 16SrX subgroup phytoplasmas, showed profiles corresponding to those of the apple proliferation phytoplasma group, 16SrX-C subgroup, “Candidatus Phytoplasma pyri” (2). A 1,155-bp sequence of 16S rDNA gene for one of the PA2f/r (1) amplicons obtained in nested PCR on P1/P7 products from one of the leaf midrib samples was deposited in GenBank (Accession No. AY949984); both strands of the fragment were sequenced with the Big Dye Terminator reaction kit (Applied Biosystems, Foster City, CA). The sequences were analyzed with the Chromas 1.55 DNA sequencing software (Technelysium, Queensland, Australia) and aligned with BLAST software ( http://www.ncbi.nlm.nih.gov ). The blast search showed 100% homology of this sequence with that of PD strain Y16392, confirming the identity with PD of the phytoplasma detected. To our knowledge, this is the first report of pear decline phytoplasmas in Serbia. References: (1) M. Heinrich et al. Plant Mol. Biol. Rep. 19:169, 2001. (2) IRPCM Phytoplasma/Spiroplasma Working Team-Phytoplasma Taxonomy Group. Int. J. Syst. Evol. Microbiol. 54:1243, 2004. (3) K.-H. Lorenz et al. Phytopathology 85:771, 1995. (4) Schneider et al. Pages 369–380 in: Molecular and Diagnostic Procedures in Mycoplasmology. Vol I. S. Razin and J. G. Tully, eds. The American Phytopathological Society, 1995.


Plant Disease ◽  
2007 ◽  
Vol 91 (12) ◽  
pp. 1688-1688 ◽  
Author(s):  
F. Terlizzi ◽  
A. R. Babini ◽  
C. Lanzoni ◽  
A. Pisi ◽  
R. Credi ◽  
...  

During the fall seasons of 2005 and 2006, diseased strawberry plants (Fragaria × ananassa Duch.) were observed in nurseries and production fields in Ferrara, Forli-Cesena, and Ravenna provinces (Emilia-Romagna region, northern Italy). Symptoms consisted of a conspicuous plant stunting with a poor root system. Older leaves rolled upward and displayed a marked premature purplish discoloration, while young leaves were cupped, chlorotic, generally reduced in size, and had shortened petioles. This strawberry disorder was similar to “marginal chlorosis”, an infectious disease occurring in France that can be induced by two different phloem-limited uncultured bacteria: the γ 3-proteobacterium ‘Candidatus Phlomobacter fragariae’ and the stolbur phytoplasma (16SrXII-A). In strawberry production fields, ‘Ca. P. fragariae’ is reported as being the prevalent agent of this disease (1). Sixty-seven diseased plants were collected from production fields and nurseries for testing for ‘Ca. P. fragariae’. Leaf samples were analyzed by 4′,6-diamidine-2-phenylindole staining and PCR. Forty samples showed fluorescent DNA in the phloem, whereas no fluorescence was observed in symptomless strawberries. When tested by PCR with primers Fra4/Fra5, which amplify a 550-bp fragment of the 16S rDNA region of ‘Ca. P. fragariae’ (1), 13 of 36 strawberries from production fields and 1 of 31 nursery plants gave a positive reaction. On the other hand, 21 samples from nurseries and 5 from production fields tested positive for stolbur phytoplasma (3). No amplification was obtained with DNA from symptomless or healthy strawberry plants. Sequencing Fra4/Fra5 amplicons from three samples (GenBank Accession Nos. DQ362916–DQ362918) showed a 98.1 to 98.6% and a 98.3 to 98.8% identity with the published sequences of the French isolate “LG2001” (GenBank Accession No. AM110766) and the Japanese isolate J-B (GenBank Accession No. AB246669) of ‘Ca. P. fragariae’, respectively. Higher homology (99.2 to 99.8%) was found with another bacterium-like organism (BLO) of the γ 3-proteobacteria subgroup (GenBank Accession No. AY057392) associated with the syndrome “basses richesses” of sugar beet (SBR). Furthermore, PCR assays performed with primers Pfr1/Pfr4, specific for spoT gene of ‘Ca. P. fragariae’, did not show any amplification with DNA from the 14 diseased strawberry plants tested. This is in agreement with the SBR BLO identification (2). To better characterize the Italian isolates, the full-length 16S rDNA gene was analyzed with primers fd1/Fra4 and Fra5/rp1, which amplify the 5′ and 3′ region of 16S rDNA gene of the proteobacteria, respectively (2). PCR products from eight isolates were sequenced, and the 16S rDNA sequences obtained (GenBank Accession Nos. DQ538372–DQ538379) showed a 96.4 to 97.3% identity with the known ‘Ca. P. fragariae’ isolates, while a higher homology (99.4 to 99.9%) was again found with the SBR BLO. To our knowledge, this is the first report of a γ 3-proteobacterium affecting strawberry in Italy. In the genome region analyzed, our isolates are more similar to the SBR BLO than to ‘Ca. P. fragariae’. Further work is in progress to investigate incidence, geographical distribution, epidemiology, and host range of this pathogen in Italy. References: (1) J. L. Danet et al. Phytopathology 93:644, 2003. (2) O. Semetey et al. Phytopathology 97:72, 2007. (3) F. Terlizzi et al. Plant Dis. 90:831, 2006.


Plant Disease ◽  
2006 ◽  
Vol 90 (10) ◽  
pp. 1360-1360 ◽  
Author(s):  
S. Botti ◽  
A. Bertaccini

In April 2006, grapevine plants with typical symptoms of yellows (GY) were observed in some South African vineyards. The affected plants showed premature yellowing or reddening and downward rolling of leaves. In some cases, these symptoms were associated with extensive lack of cane lignification that was undistinguishable from yellows symptoms reported in grapevine in the major viticultural areas of the world. Nucleic acids were extracted separately from 0.1 g of fresh leaf midribs and cane phloem scrapes from three symptomatic and three asymptomatic grapevine plants, cv. Shiraz, and from three symptomatic plants, cv. Cabernet, collected from three different locations using Qiagen (Milan, Italy) DNAeasy Plant Mini Kit. A nested polymerase chain reaction (PCR) assay was employed for phytoplasma detection with 2.5 μl of the extracted DNA. Direct and nested PCR assays were performed with P1/P7 (2) and R16F2/R2 (1) universal primer pairs, respectively, obtaining the expected products only from phloem scrapes of the symptomatic plant samples cv. Shiraz. Restriction fragment length polymorphism (RFLP) analyses of R16F2/R2 amplicons with TruI and Tsp509I restriction enzymes, discriminating among phytoplasma ribosomal group and subgroups, showed profiles corresponding to those of “Candidatus Phytoplasma aurantifolia” (ribosomal subgroup 16SrII-B) in all three positive samples. A Stolbur phytoplasma profile (ribosomal subgroup 16SrXII-A) was also observed in one of those samples, indicating the presence of mixed phytoplasma infection (1). Sequencing of the obtained amplicons confirmed the RFLP phytoplasma identification; in particular 16SrXII-A could be the same phytoplasma associated with the ‘Bois Noir’ disease reported in grapevine; the 1601-bp sequence of 16SrII-B phytoplasma showed 98% similarity to U15442, i.e., to the phytoplasma associated with lime witches'-broom disease in Oman (“Ca. P. aurantifolia”) confirming RFLP results. To our knowledge, this is the first report of phytoplasmas in grapevine in South Africa. References: (1) I.-M. Lee et al. Phytopathology 85:728, 1995. (2) B. Schneider et al. Pages 369–380 in: Molecular and Diagnostic Procedures in Mycoplasmology Vol. I. Academic Press Inc., 1995.


Plant Disease ◽  
2002 ◽  
Vol 86 (3) ◽  
pp. 330-330 ◽  
Author(s):  
W. Villalobos ◽  
L. Moreira ◽  
C. Rivera ◽  
K. D. Bottner ◽  
I.-M. Lee

An outbreak of a witches' broom disease affected approximately 20% of plants in several chayote (Sechium edule (Jacq.) Schwartz) fields in the commercial production area of the Ujarrás Valley, Cartago Province, Costa Rica during 2000 and 2001. Affected chayote plants exhibited symptoms, including basal proliferation with severe foliage reduction, aborted flowers, and deformed fruits, suggestive of phytoplasmal infection. Two other symptomatic cucurbit species growing near the chayote fields were also identified. These species were tacaco plants (S. tacaco (Pitt.) C. Jeffrey), an edible cucurbit for domestic marketing in Costa Rica, showing severe size reduction of leaves and fruits, and Rytidostylis carthaginensis (Jacq.) Kuntze, a weed in chayote and tacaco fields, exhibiting abnormal tendril proliferation. Plants were analyzed for phytoplasma infection by a nested polymerase chain reaction (PCR) assay, using the universal rRNA primer pair P1/P7 followed by R16F2n/R16R2 (2). Phytoplasmas were detected in all symptomatic samples (18 chayote, 6 tacaco, and 3 weed) tested but were undetectable in all asymptomatic samples (10 chayote, 6 tacaco, and 2 weed). Restriction fragment length polymorphism (RFLP) analysis of PCR products (16S rDNA sequences) by separate digestion with eight restriction enzymes (RsaI, HhaI, KpnI, BfaI, HaeIII, HpaII, AluI, MseI) revealed that a phytoplasma belonging to subgroup 16SrI-B in the aster yellows phytoplasma group (16SrI) was associated with chayote witches' broom (CWB). The same or very similar phytoplasmas were found in both symptomatic tacaco and R. carthaginensis plants. Phylogenetic analysis of 16SrDNA sequences also confirmed the CWB phytoplasma to be most similar to members of subgroup 16SrI-B. Similar diseases in chayote and other cucurbits have been reported in Brazil (3), Taiwan (1), and Mexico (4). The CWB phytoplasma differs from the phytoplasma (16SrIII-J subgroup) associated with chayote in Brazil. The identities of phytoplasmas associated with cucurbits in Taiwan and Mexico are unknown. The occurrence of an aster yellows group phytoplasma in chayote may pose a potential threat to continued production and exportation of this cash crop. To our knowledge, this is the first report of 16SrI-B subgroup phytoplasmas in naturally infected cucurbits in Costa Rica. References: (1) T. G. Chou et al. Plant Dis. Rep. 60:378, 1976. (2) I.-M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998. (3) H. G. Montano et al. Plant Dis. 84:429, 2000. (4) E. Olivas. Rev. Fitopatol. (Lima) 13:14, 1978.


Plant Disease ◽  
2002 ◽  
Vol 86 (5) ◽  
pp. 477-484 ◽  
Author(s):  
Yusuf Abou-Jawdah ◽  
Armig Karakashian ◽  
Hana Sobh ◽  
Marta Martini ◽  
Ing-Ming Lee

An epidemic of almond witches'-broom has devastated almond production in Lebanon. Thousands of almond trees have died over the past 10 years due to the rapid spread of the disease. The symptoms, which include early flowering, stunted growth, leaf rosetting, dieback, off-season growth, proliferation of slender shoots, and witches'-brooms arising mainly from the main trunk and roots, resemble those caused by phytoplasmal infections. For the detection of the putative causal agent, nested polymerase chain reaction (PCR) was performed using universal primers (P1/P7, R16mF2/R16mR1, and R16F2n/R16R2) commonly used for the specific diagnosis of plant pathogenic phytoplasmas. Phytoplasmas were readily detected from infected trees with witches'-broom symptoms collected from three major almond growing regions in Lebanon. Restriction fragment length polymorphism (RFLP) analysis of PCR products amplified by the primer pair R16F2n/R16R2 revealed that the phytoplasma associated with infected almonds is similar to, but distinct from, members of the pigeon pea witches'-broom phytoplasma group (16SrIX). A new subgroup, 16SrIX-B, was designated. Sequencing of the amplified products of the phytoplasma 16S rRNA gene indicated that almond witches'-broom (AlmWB) phytoplasma is most closely related to members of the pigeon pea witches'-broom phytoplasma group (with sequence homology ranging from 98.4 to 99.0%). Phylogenetic analysis of 16S rDNA sequences from AlmWB phytoplasma and from representative phytoplasmas from GenBank showed that the AlmWB phytoplasma represents a distinct lineage within the pigeon pea witches'-broom subclade. The same phytoplasma appears also to infect peach and nectarine seedlings.


Genetika ◽  
2010 ◽  
Vol 42 (1) ◽  
pp. 145-153
Author(s):  
Dragana Josic ◽  
Slobodan Kuzmanovic ◽  
Sasa Stojanovic ◽  
Goran Aleksic ◽  
Snezana Pavlovic ◽  
...  

'Bois noir' (BN) is an important grapevine disease associated with phytoplasmas belonging to ribosomal subgroup 16SrXII-A. Phytoplasmas cause diseases in several hundred plant species. The number of infected cultivars is growing each year and it is important to follow the spreading of the phytoplasma in the different regions and identify which strains are present in specific regions on specific cultivars. Phytoplasmas are identified and classified based on direct sequencing of phytoplasma 16S rDNA or the 16S to 23S intergenic spacer region, but this approach is not always practical when a large number of unknown phytoplasmas is to be analyzed. Classification by RFLP analysis has provided a simple and rapid method that can be used to differentiate and identify a large number of unclarified phytoplasmas. Our objective was to investigate presence of phytoplasmas of 16SrXII-A group (Stolbur) in Zupa vineyard region. Detection was based on RFLP analysis of 16s rDNA sequences using four restriction enzymes: Tru1I, AluI, KpnI and TaqI. We identified phytoplasmas of XIIA group on two of three investigated cultivars (Zupljanka and Frankovka, but not on Plovdina) in the Zupa vineyard regions (Gornje Rataje and Tules locality). This is the first report of Stolbur phytoplasma on cv. Zupljanka in Zupa region.


2011 ◽  
Vol 12 (1) ◽  
pp. 34 ◽  
Author(s):  
Craig G. Webster ◽  
William W. Turechek ◽  
H. Charles Mellinger ◽  
Galen Frantz ◽  
Nancy Roe ◽  
...  

To the best of our knowledge, this is the first report of GRSV infecting tomatillo and eggplant, and it is the first report of GRSV infecting pepper in the United States. This first identification of GRSV-infected crop plants in commercial fields in Palm Beach and Manatee Counties demonstrates the continuing geographic spread of the virus into additional vegetable production areas of Florida. This information indicates that a wide range of solanaceous plants is likely to be infected by this emerging viral pathogen in Florida and beyond. Accepted for publication 27 June 2011. Published 25 July 2011.


Sign in / Sign up

Export Citation Format

Share Document