scholarly journals First Report of Pear Decline Phytoplasmas on Pear in Serbia

Plant Disease ◽  
2005 ◽  
Vol 89 (7) ◽  
pp. 774-774 ◽  
Author(s):  
B. Duduk ◽  
M. Ivanović ◽  
A. Obradović ◽  
S. Paltrinieri ◽  
A. Bertaccini

During August of 2004, pear (Pyrus communis L.) plants with typical symptoms of pear decline (PD) were observed in orchards in central Serbia. The affected plants showed premature reddening and upward rolling of leaves that often showed down-turned petioles. In some cases, premature defoliation was observed. Although a similar decline of pear was observed earlier, until now, the causal agent had not been identified. DNA was extracted with a chloroform/phenol procedure from fresh leaf midribs and branch phloem scrapes of four symptomatic and one asymptomatic pear plants separately. A nested polymerase chain reaction assay (PCR) was used for phytoplasma detection (first PCR round with P1/P7 (4) phytoplasma universal primer pair, followed by nested PCR with group 16SrX specific primers f01/r01) (3). With these primers, the expected products from phloem scrapes and midrib extracts of symptomatic plant samples were obtained. Restriction fragment length polymorphism (RFLP) analyses of the f01/r01 amplicon, with RsaI and SspI restriction enzymes, discriminating among 16SrX subgroup phytoplasmas, showed profiles corresponding to those of the apple proliferation phytoplasma group, 16SrX-C subgroup, “Candidatus Phytoplasma pyri” (2). A 1,155-bp sequence of 16S rDNA gene for one of the PA2f/r (1) amplicons obtained in nested PCR on P1/P7 products from one of the leaf midrib samples was deposited in GenBank (Accession No. AY949984); both strands of the fragment were sequenced with the Big Dye Terminator reaction kit (Applied Biosystems, Foster City, CA). The sequences were analyzed with the Chromas 1.55 DNA sequencing software (Technelysium, Queensland, Australia) and aligned with BLAST software ( http://www.ncbi.nlm.nih.gov ). The blast search showed 100% homology of this sequence with that of PD strain Y16392, confirming the identity with PD of the phytoplasma detected. To our knowledge, this is the first report of pear decline phytoplasmas in Serbia. References: (1) M. Heinrich et al. Plant Mol. Biol. Rep. 19:169, 2001. (2) IRPCM Phytoplasma/Spiroplasma Working Team-Phytoplasma Taxonomy Group. Int. J. Syst. Evol. Microbiol. 54:1243, 2004. (3) K.-H. Lorenz et al. Phytopathology 85:771, 1995. (4) Schneider et al. Pages 369–380 in: Molecular and Diagnostic Procedures in Mycoplasmology. Vol I. S. Razin and J. G. Tully, eds. The American Phytopathological Society, 1995.

Plant Disease ◽  
2006 ◽  
Vol 90 (10) ◽  
pp. 1360-1360 ◽  
Author(s):  
S. Botti ◽  
A. Bertaccini

In April 2006, grapevine plants with typical symptoms of yellows (GY) were observed in some South African vineyards. The affected plants showed premature yellowing or reddening and downward rolling of leaves. In some cases, these symptoms were associated with extensive lack of cane lignification that was undistinguishable from yellows symptoms reported in grapevine in the major viticultural areas of the world. Nucleic acids were extracted separately from 0.1 g of fresh leaf midribs and cane phloem scrapes from three symptomatic and three asymptomatic grapevine plants, cv. Shiraz, and from three symptomatic plants, cv. Cabernet, collected from three different locations using Qiagen (Milan, Italy) DNAeasy Plant Mini Kit. A nested polymerase chain reaction (PCR) assay was employed for phytoplasma detection with 2.5 μl of the extracted DNA. Direct and nested PCR assays were performed with P1/P7 (2) and R16F2/R2 (1) universal primer pairs, respectively, obtaining the expected products only from phloem scrapes of the symptomatic plant samples cv. Shiraz. Restriction fragment length polymorphism (RFLP) analyses of R16F2/R2 amplicons with TruI and Tsp509I restriction enzymes, discriminating among phytoplasma ribosomal group and subgroups, showed profiles corresponding to those of “Candidatus Phytoplasma aurantifolia” (ribosomal subgroup 16SrII-B) in all three positive samples. A Stolbur phytoplasma profile (ribosomal subgroup 16SrXII-A) was also observed in one of those samples, indicating the presence of mixed phytoplasma infection (1). Sequencing of the obtained amplicons confirmed the RFLP phytoplasma identification; in particular 16SrXII-A could be the same phytoplasma associated with the ‘Bois Noir’ disease reported in grapevine; the 1601-bp sequence of 16SrII-B phytoplasma showed 98% similarity to U15442, i.e., to the phytoplasma associated with lime witches'-broom disease in Oman (“Ca. P. aurantifolia”) confirming RFLP results. To our knowledge, this is the first report of phytoplasmas in grapevine in South Africa. References: (1) I.-M. Lee et al. Phytopathology 85:728, 1995. (2) B. Schneider et al. Pages 369–380 in: Molecular and Diagnostic Procedures in Mycoplasmology Vol. I. Academic Press Inc., 1995.


Plant Disease ◽  
2006 ◽  
Vol 90 (7) ◽  
pp. 973-973 ◽  
Author(s):  
N. A. Al-Saady ◽  
A. M. Al-Subhi ◽  
A. Al-Nabhani ◽  
A. J. Khan

Chickpea (Cicer arietinum), locally known as “Dungo”, is grown for legume and animal feed mainly in the interior region of Oman. During February 2006, survey samples of chickpea leaves from plants showing yellows disease symptoms that included phyllody and little leaf were collected from the Nizwa Region (175 km south of Muscat). Total nucleic acid was extracted from asymptomatic and symptomatic chickpea leaves using a cetyltrimethylammoniumbromide method with modifications (3). All leaf samples from eight symptomatic plants consistently tested positive using a polymerase chain reaction assay (PCR) with phytoplasma universal primers (P1/P7) that amplify a 1.8-kb phytoplasma rDNA product and followed by nested PCR with R16F2n/R16R2 primers yielding a product of 1.2 kb (2). No PCR products were evident when DNA extracted from healthy plants was used as template. Restriction fragment length polymorphism analysis of nested PCR products by separate digestion with Tru9I, HaeIII, HpaII, AluI, TaqI, HhaI, and RsaI restriction enzymes revealed that a phytoplasma belonging to group 16SrII peanut witches'-broom group (2) was associated with chickpea phyllody and little leaf disease in Oman. Restriction profiles of chickpea phytoplasma were identical with those of alfalfa witches'-broom phytoplasma, a known subgroup 16SrII-B strain (3). To our knowledge, this is the first report of phytoplasma infecting chickpea crops in Oman. References: (1) A. J. Khan et al. Phytopathology, 92:1038, 2002. (2). I.-M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998 (3) M. A. Saghai-Maroof et al. Proc. Natl. Acad. Sci. USA. 81:8014, 1984.


Plant Disease ◽  
2001 ◽  
Vol 85 (4) ◽  
pp. 447-447 ◽  
Author(s):  
I.-M. Lee ◽  
R. A. Dane ◽  
M. C. Black ◽  
Noel Troxclair

In early spring 2000 carrot crops in southwestern Texas were severely infected by an outbreak of phyllody associated with aster yellows phytoplasma. Cabbage crops that had been planted adjacent to these carrot fields began to display previously unobserved symptoms characteristic of phytoplasma infection. Symptoms included purple discoloration in leaf veins and at the outer edges of leaves on cabbage heads. Proliferation of sprouts also occurred at the base of the stem and between leaf layers of some plants, and sprouts sometimes continued to proliferate on extended stems. About 5% of cabbage plants in the field exhibited these symptoms. Two symptomless and four symptomatic cabbage heads were collected in early April from one cabbage field. Veinal tissues were stripped from each sample and used for total nucleic acid extraction. To obtain specific and sufficient amount of PCR products for analysis, nested PCR was performed by using primer pairs (first with P1/P7 followed by R16F2n/R16R2) (1,2) universal for phytoplasma detection. A specific 16S rDNA fragment (about 1.2 kb) was strongly amplified from the four symptomatic but not from the two asymptomatic samples. The nested PCR products obtained from the four symptomatic samples were then analyzed by restriction fragment length polymorphism (RFLP) using the restriction enzymes MseI, HhaI, and HpaII, and the RFLP patterns were compared to the published patterns of known phytoplasmas (1). The resulting RFLP patterns were identical to those of a phytoplasma belonging to subgroup B of the aster yellows phytoplasma group (16SrI). These RFLP patterns were also evident in putative restriction sites observed in a 1.5 kbp nucleotide sequence of the 16S rDNA. This is the first report of aster yellows phytoplasma associated disease symptoms in cabbage in Texas. The occurrence of cabbage proliferation coincided with the presence of high populations of the insect vector, aster leafhopper. References: (1) I.-M. Lee et al. Int. J. Syst. Bacteriol. 48:1153, 1998. (2) B. Schneider et al. 1995. Molecular and Diagnostic Procedures in Mycoplasmology, Vol. I. Academic Press, San Diego, CA.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Jasem Saki ◽  
Masoud Foroutan-Rad ◽  
Reza Asadpouri

Background. Rodents could act as reservoir forCryptosporidiumspp. speciallyC. parvum, a zoonotic agent responsible for human infections. Since there is no information aboutCryptosporidiuminfection in rodents of Ahvaz city, southwest of Iran, hence, this survey was performed to determine the prevalence and molecular characterization ofCryptosporidiumspp. in this region.Materials and Methods. One hundred rodents were trapped from different regions of Ahvaz city. Intestine contents and fecal specimens of rodents were studied using both microscopy examination to identify oocyst and nested-polymerase chain reaction (PCR) technique for 18s rRNA gene detection. Eventually restriction fragment length polymorphism (RFLP) method usingSspIandVspIrestriction enzymes was carried out to genotype the species and then obtained results were sequenced.Results. Three out of 100 samples were diagnosed as positive and overall prevalence ofCryptosporidiumspp. was 3% using both modified Ziehl-Neelsen staining under light microscope and nested-PCR (830 bp) methods. Afterwards, PCR-RFLP was performed on positive samples andC. parvumpattern was identified. Finally PCR-RFLP findings were sequenced and presence ofC. parvumwas confirmed again.Conclusions. Our study showed rodents could be potential reservoir forC. parvum. So an integrated program for control and combat with them should be adopted and continued.


2019 ◽  
Author(s):  
Birhanu Hadush Abera ◽  
Molla Michaelay ◽  
Habtamu Taddele ◽  
Nigus Abebe ◽  
Abrha Tesfay ◽  
...  

Abstract Background: Epizootic lymphangitis (EL), caused by Histoplasma capsulatum variety farciminosum (HCF) is a contagious chronic disease of equines characterized by development of nodular lesions in the lymph nodes, lymphatic vessels and skin. This disease is the most important diseases of equines in Ethiopia causing a significant economic loss, particularly cart pulling equines. Todate there is no sound diagnostic nor control measure implemented in the country. Furthermore, there is a shortage of data on the epidemiology of the disease in different regions of the country including northern Ethiopia. This study was conducted to investigate the epidemiology of EL in northern Ethiopia using the conventional methods and the nested polymerase chain reaction (PCR). Methods: A total of 191 cart-horses were enrolled and used as sources of pus and blood samples. The blood was used for the extraction of the DNA of HCF from buffy coat for nested PCR while the pus samples were cultured on Sabourauds Dextrose Agar for isolation. Statistical Package for Social Sciences (SPSS) version 21 was used for data analysis by applying logistic regression, receiver operating characteristic (ROC) curve and Cohen’s kappa coefficient test. In addition, the level of agreement between the clinical examination and the nested PCR was evaluated. Results: Infection with HCF was confirmed in 44% (84/191) of the horses using nested PCR. Subclinical infection was observed in 18.18% (22/121) of the apparently healthy horses. Considering nested PCR as a gold standard, the sensitivity and specificity of the clinical examination were 74% and 95%, respectively while the area under the ROC curve (AUR) was 0.83 (95% confidence interval, 0.77, 0.896). Moreover, a moderate (k=0.675) agreement was observed between the nested PCR and clinical examination.Conclusions: The findings of the present study showed the wide spread occurrence of EL in northern Ethiopia and the advantage of the nested PCR in detecting of the infection of HCF even before the clinical symptoms are apparent.


2001 ◽  
Vol 22 (3) ◽  
pp. 151-158 ◽  
Author(s):  
Mario Menschikowski ◽  
Margot Vogel ◽  
Rolf Eckey ◽  
Gerd Dinnebier ◽  
Werner Jaross

In the present study a protocol of in situ reverse transcriptase‐nested polymerase chain reaction (in situ RT‐nested PCR) was examined based on the following modifications. (i) To exclude false positive signals caused by “DNA repair mechanisms” and “endogenous priming”, a two‐step PCR was applied after reverse transcription. The first step was performed in the presence of extrinsic primers and unlabeled nucleotides with a maximum of PCR cycles possible without destroying the cell morphology. The second step consisted of only one annealing/elongation reaction, the target sequence marked by addition of digoxigenin‐labeled nucleotides and intrinsic primers. (ii) In order to prevent amplifications of genomic DNA nested primer pairs were applied crossing intron sequences. (iii) To minimize the diffusion of PCR products in cells, the extrinsic primers were extended with complementary 5′‐tails. This approach results in the generation of high molecular weight concatamers during PCR cycles. By applying this protocol, immunostainings specific for phospholipase A2 of type IIA mRNA were exclusively detectable in the cytoplasm of HepG2 hepatoma cells, which were used as a model system, whereas the nuclei were unstained. Multiple control experiments yielded completely negative results. These data suggest that the in situ RT‐nested PCR, which in comparison to the method of in situ RT‐PCR‐in situ‐hybridisation is simpler and less time‐consuming, can be used as an alternative approach to identify intracellular nucleic acids.


2002 ◽  
Vol 65 (8) ◽  
pp. 1227-1232 ◽  
Author(s):  
TONGRUI LIU ◽  
KAREN LILJEBJELKE ◽  
ELIZABETH BARTLETT ◽  
CHARLES HOFACRE ◽  
SUSAN SANCHEZ ◽  
...  

Isolation of Salmonella from environmental and processing-plant poultry samples requires the sampling of large numbers of areas within the poultry house or plant. Subsequently, the required number of samples necessitates a large volume of work for a microbiology laboratory, especially when the protocol requires the inclusion of a delayed secondary enrichment for the isolation of Salmonella. This study examined the use of the polymerase chain reaction (PCR) to identify those secondary enrichments containing Salmonella. The unique Salmonella virulence gene invA was chosen as the target for the development of a nested PCR because of its uniform distribution among Salmonella serotypes. The use of nested PCR primers increased the sensitivity of detection 100-fold, resulting in the detection of as few as four cells. There was a strong, statistically significant positive correlation between PCR and culture results as determined by chi-square (P < 0.001) and kappa (k = 0.915; excellent agreement) tests. Using PCR to screen primary enrichments for presumptive Salmonella contamination, we improved our efficiency at isolating Salmonella upon secondary enrichment by 20%, and no false negatives were observed. This method will not only validate the use of secondary enrichment procedures but also reduce costs and manpower required for the surveillance of Salmonella.


Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 256-262 ◽  
Author(s):  
Roberto Vázquez-Euán ◽  
Nigel Harrison ◽  
María Narvaez ◽  
Carlos Oropeza

The occurrence of 16SrIV group phytoplasmas in palm species Sabal mexicana and Pseudophoenix sargentii is reported here for the first time. Palm trees showed leaf decay and leaf yellowing syndromes, respectively. An amplification product (1.4 kb) was obtained in symptomatic S. mexicana (18 of 21) and symptomatic P. sargentii (1 of 1) palm trees sampled in different locations in Yucatan State, Mexico; five of the positive S. mexicana and the positive P. sargentii trees died. The identity of the phytoplasmas from these species was determined by restriction fragment length polymorphism profiling with restriction enzymes AluI and HinfI, showing there could be two phytoplasma strains of the 16SrIV group. In one S. mexicana palm, the profile was the same as observed with these enzymes for phytoplasmas of 16SrIV-A subgroup, previously associated with Cocos nucifera palm trees and, in the rest of the trees, including the P. sargentii palm, the profile was for phytoplasmas of the 16SrIV-D subgroup. These identities were supported by analyses of the amplicons obtained by nested polymerase chain reaction by nucleotide-nucleotide BLAST analysis. Geographical distribution of the association S. mexicana/16SrIV group phytoplasmas was found widely dispersed in Yucatan State. A potential role of S. mexicana palm trees as a permanent source of phytoplasma inoculum is suggested. In addition to P. sargentii, other palm species (Thrinax radiata and C. nucifera) coexisting with S. mexicana trees were also sampled and analyzed.


Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 582-582 ◽  
Author(s):  
Y.-W. Tseng ◽  
W.-L. Deng ◽  
C.-J. Chang ◽  
C.-C. Su ◽  
C.-L. Chen ◽  
...  

Purple coneflower (Echinacea purpurea), widely grown as an ornamental and medicinal plant, is a perennial flowering plant that is native to eastern North America. In July 2011, symptoms indicative of phytoplasma disease, including floral virescence, phyllody, and witches'-broom (WB), were observed to be affecting plants in coneflower fields in Wufeng, Taichung City, Taiwan. Incidence of infected plants was estimated to be greater than 90% within a single field. Phytoplasmas previously associated with purple coneflower WB disease have all been classified as aster yellows group (16SrI) strains (GenBank Accession Nos. EU333395, AY394856, EU416172, and EF546778) except for pale purple coneflower (Echinacea pallida) WB in Australia, which was identified as a subgroup 16SrII-D member (2). Three diseased plants were uprooted and transplanted in a greenhouse for further study. Transmission electron microscopy revealed clusters of phytoplasma cells ranging from 170 to 490 nm in diameter in phloem sieve elements of virescent and phylloid flowers and stems from diseased plants. Comparable tissues from symptomless plants were devoid of phytoplasma. Total DNA was extracted from plant tissue samples (50 to 100 mg each) including stems, leaves, and flowers by a modified CTAB method (1) from three symptomatic plants as well as from three asymptomatic coneflower plants seedlings. Analyses by a nested PCR using universal primer pairs P1/P7 followed by R16F2n/R16R2 were performed to detect putative phytoplasma (2). Each primer pair amplified a single PCR product of either 1.8 or 1.2 kb, respectively, from diseased plant tissues only. The nested PCR products (1.2 kb) amplified from phylloid flowers of the three diseased plants were cloned separately and sequenced (GenBank Accession Nos. JN885460, JN885461, and JN885462). Blast analysis of the sequences revealed a 99.7 to 99.8% sequence identity with those of Echinacea WB phytoplasma strain EWB5 and EWB6 (GenBank Accession Nos. JF340076 and JF340080), which reportedly belonged to the 16SrII-D subgroup (2). Moreover, iPhyClassifier software (3) was used to perform sequence comparison and generate the virtual restriction fragment length polymorphism (RFLP) profile. The 16S rDNA sequences share a 99.4 to 99.5% similarity with that of the ‘Candidatus Phytoplasma australasiae’ reference strain (Y10097) and the RFLP patterns are identical to that of the 16SrII-A subgroup. Taken together, these results indicated that the phytoplasma infecting purple coneflower in Taiwan is a ‘Ca. Phytoplasma australasiae’-related strain and belongs to the 16SrII-A subgroup. To our knowledge, this is the first report of a 16SrII-A subgroup phytoplasma causing WB disease on purple coneflower in Taiwan. The occurrence of phytoplasma on purple coneflower could have direct implication for the economically important ornamental, medicinal plant, and floral industry in Taiwan, especially to the growers and breeders that eagerly promote the purple coneflower industry. References: (1) T. M. Fulton et al. Plant Mol. Biol. Rep. 13:207, 1995. (2) T. L. Pearce et al. Plant Dis. 95:773, 2011. (3) Y. Zhao et al. Int. J. Syst. Evol. Microbiol. 59:2582, 2009.


1996 ◽  
Vol 42 (8) ◽  
pp. 862-866 ◽  
Author(s):  
David Juck ◽  
Jordan Ingram ◽  
Michèle Prévost ◽  
Josée Coallier ◽  
Charles Greer

A rapid and sensitive method for the detection of low levels of bacteria in potable water was developed. The fecal indicator bacterium Escherichia coli was used as the test organism in a filtration concentration–nested polymerase chain reaction (PCR) protocol, combined with ethidium bromide visualization of PCR products. Two sets of primers were designed from the E. coli specific β-glucuronidase gene (uidA), the primary pair producing a 486-bp fragment that was used as template for the nested primer pair delineating a 186-bp fragment. This protocol can detect 1–10 bacterial cells/50 mL water sample within 6–8 h, in contrast to traditional culturing or Southern hybridization methods which require 2–3 days for results.Key words: nested PCR, sensitive, detection, potable water.


Sign in / Sign up

Export Citation Format

Share Document