scholarly journals Quantitative Trait Loci Mapping for Spot Blotch Resistance in Two Biparental Mapping Populations of Bread Wheat

2020 ◽  
Vol 110 (12) ◽  
pp. 1980-1987 ◽  
Author(s):  
Xinyao He ◽  
Susanne Dreisigacker ◽  
Carolina Sansaloni ◽  
Etienne Duveiller ◽  
Ravi P. Singh ◽  
...  

Spot blotch (SB), caused by Bipolaris sorokiniana, is a major fungal disease of wheat in South Asia and South America. Two biparental mapping populations with 232 F2:7 progenies each were generated, with CIMMYT breeding lines CASCABEL and KATH as resistant parents and CIANO T79 as the common susceptible parent. The two populations were evaluated for field SB resistance in CIMMYT’s Agua Fria station for three consecutive cropping seasons, with artificial inoculation. Genotyping was done with the DArTseq platform and approximately 1,500 high quality and nonredundant markers were used for quantitative trait loci (QTL) mapping. In both populations, a major QTL was found on chromosome 5A in the Vrn-A1 region, explaining phenotypic variations of 13.5 to 25.9%, which turned up to be less- or nonsignificant when days to heading and plant height were used as covariates in the analysis, implying a disease escape mechanism. Another major QTL was located on chromosome 5B in CASCABEL, accounting for 8.9 to 21.4% of phenotypic variation. Minor QTL were found on 4A and 4B in CASCABEL; 1B, 4B, and 4D in KATH; and 1B, 2B, and 4B in CIANO T79. Through an analysis of QTL projection onto the IWGSC Chinese Spring reference genome, the 5B QTL in CASCABEL was mapped in the Sb2 region, delimited by the single nucleotide polymorphism marker wsnp_Ku_c50354_55979952 and the simple sequence repeat marker gwm213, with a physical distance of about 14 Mb to the Tsn1 locus.

Crop Science ◽  
2012 ◽  
Vol 52 (2) ◽  
pp. 517-523 ◽  
Author(s):  
K. K. Jena ◽  
S. M. Kim ◽  
J.P. Suh ◽  
C. I. Yang ◽  
Y.G. Kim

2010 ◽  
Vol 23 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Reza Aghnoum ◽  
Thierry C. Marcel ◽  
Annika Johrde ◽  
Nicola Pecchioni ◽  
Patrick Schweizer ◽  
...  

The basal resistance of barley to powdery mildew (Blumeria graminis f. sp. hordei) is a quantitatively inherited trait that is based on nonhypersensitive mechanisms of defense. A functional genomic approach indicates that many plant candidate genes are involved in the defense against formation of fungal haustoria. It is not known which of these candidate genes have allelic variation that contributes to the natural variation in powdery mildew resistance, because many of them may be highly conserved within the barley species and may act downstream of the basal resistance reaction. Twenty-two expressed sequence tag or cDNA clone sequences that are likely to play a role in the barley–Blumeria interaction based on transcriptional profiling, gene silencing, or overexpression data, as well as mlo, Ror1, and Ror2, were mapped and considered candidate genes for contribution to basal resistance. We mapped the quantitative trait loci (QTL) for powdery mildew resistance in six mapping populations of barley at seedling and adult plant stages and developed an improved high-density integrated genetic map containing 6,990 markers for comparing QTL and candidate gene positions over mapping populations. We mapped 12 QTL at seedling stage and 13 QTL at adult plant stage, of which four were in common between the two developmental stages. Six of the candidate genes showed coincidence in their map positions with the QTL identified for basal resistance to powdery mildew. This co-localization justifies giving priority to those six candidate genes to validate them as being responsible for the phenotypic effects of the QTL for basal resistance.


2021 ◽  
Author(s):  
Sarah Odell ◽  
Asher I Hudson ◽  
Sébastien Praud ◽  
Pierre Dubreuil ◽  
Marie-Helene Tixier ◽  
...  

The search for quantitative trait loci (QTL) that explain complex traits such as yield and flowering time has been ongoing in all crops. Methods such as bi-parental QTL mapping and genome-wide association studies (GWAS) each have their own advantages and limitations. Multi-parent advanced generation intercross (MAGIC) populations contain more recombination events and genetic diversity than bi-parental mapping populations and reduce the confounding effect of population structure that is an issue in association mapping populations. Here we discuss the results of using a MAGIC population of doubled haploid (DH) maize lines created from 16 diverse founders to perform QTL mapping. We compare three models that assume bi-allelic, founder, and ancestral haplotype allelic states for QTL. The three methods have different power to detect QTL for a variety of agronomic traits. Although the founder approach finds the most QTL, there are also QTL unique to each method, suggesting that each model has advantages for traits with different genetic architectures. A closer look at a well-characterized flowering time QTL, qDTA8, which contains vgt1, suggests a potential epistatic interaction and highlights the strengths and weaknesses of each method. Overall, our results reinforce the importance of considering different approaches to analyzing genotypic datasets, and show the limitations of binary SNP data for identifying multi-allelic QTL.


2008 ◽  
Vol 117 (2) ◽  
pp. 191-202 ◽  
Author(s):  
Mélanie Jubault ◽  
Christine Lariagon ◽  
Matthieu Simon ◽  
Régine Delourme ◽  
Maria J. Manzanares-Dauleux

2021 ◽  
Vol 266 ◽  
pp. 108128
Author(s):  
Nan Su San ◽  
Kazuya Soda ◽  
Yosuke Ootsuki ◽  
Masahiro Yamashita ◽  
Ryoji Karimata ◽  
...  

2001 ◽  
Vol 12 (7) ◽  
pp. 546-553 ◽  
Author(s):  
Susan E. Bergeson ◽  
Melinda L. Helms ◽  
Laurie A. O'Toole ◽  
Mark W. Jarvis ◽  
Heather S. Hain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document