scholarly journals Genetic and Pathogenic Variability of Fusarium oxysporum f. sp. cepae Isolated from Onion and Welsh Onion in Japan

2015 ◽  
Vol 105 (4) ◽  
pp. 525-532 ◽  
Author(s):  
Kazunori Sasaki ◽  
Katsuya Nakahara ◽  
Shuhei Tanaka ◽  
Masayoshi Shigyo ◽  
Shin-ichi Ito

Fusarium oxysporum f. sp. cepae causes Fusarium basal rot in onion (common onion) and Fusarium wilt in Welsh onion. Although these diseases have been detected in various areas in Japan, knowledge about the genetic and pathogenic variability of F. oxysporum f. sp. cepae is very limited. In this study, F. oxysporum f. sp. cepae was isolated from onion and Welsh onion grown in 12 locations in Japan, and a total of 55 F. oxysporum f. sp. cepae isolates (27 from onion and 28 from Welsh onion) were characterized based on their rDNA intergenic spacer (IGS) and translation elongation factor-1α (EF-1α) nucleotide sequences, vegetative compatibility groups (VCGs), and the presence of the SIX (secreted in xylem) homologs. Phylogenetic analysis of IGS sequences showed that these isolates were grouped into eight clades (A to H), and 20 onion isolates belonging to clade H were monophyletic and assigned to the same VCG. All the IGS-clade H isolates possessed homologs of SIX3, SIX5, and SIX7. The SIX3 homolog was located on a 4 Mb-sized chromosome in the IGS-clade H isolates. Pathogenicity tests using onion seedlings showed that all the isolates with high virulence were in the IGS-clade H. These results suggest that F. oxysporum f. sp. cepae isolates belonging to the IGS-clade H are genetically and pathogenically different from those belonging to the other IGS clades.

2016 ◽  
Vol 141 (6) ◽  
pp. 645-652 ◽  
Author(s):  
Michelle L. Paynter ◽  
Elizabeth Czislowski ◽  
Mark E. Herrington ◽  
Elizabeth A.B. Aitken

Variation in the virulence of Fusarium oxysporum f. sp. fragariae (Fof) strains is important when evaluating the resistance of plants to this fungus. Twenty-five isolates of F. oxysporum harvested from strawberry (Fragaria ×ananassa) plants growing in Australia were characterized using pathogenicity tests, vegetative compatibility groups (VCGs), and genetic analysis of translation elongation factor 1 alpha (EF-1α). The level of disease varied depending on isolate used, indicating heterogeneous populations of Fof. Two distinct VCGs were identified and corresponded to two of the 10 lineages identified by partial EF-1α. Using a subset of Fof isolates, resistance in eight cultivars ranged from highly resistant to highly susceptible, with some cultivar × isolate interaction. ‘Strawberry Festival’, ‘QHI Sugarbaby’, and ‘DPI Rubygem’ had high levels of resistance across all isolates. Isolates from Western Australia (WA) were genetically distinct from those from Queensland (QLD) and were more virulent to ‘Camarosa’, a major cultivar grown in WA.


Plant Disease ◽  
2012 ◽  
Vol 96 (9) ◽  
pp. 1250-1261 ◽  
Author(s):  
Michael J. Southwood ◽  
Altus Viljoen ◽  
Lizel Mostert ◽  
Lindy J. Rose ◽  
Adéle McLeod

Fusarium oxysporum f. sp. cepae causes Fusarium basal rot of onion, a disease of worldwide importance. Limited information is available on the phylogenetic diversity, vegetative compatibility groups (VCGs), mating type idiomorphs, and virulence of F. oxysporum isolates associated with onion. Therefore, these characteristics were investigated in 19 F. oxysporum f. sp. cepae isolates from Colorado, 27 F. oxysporum f. sp. cepae and 33 F. oxysporum isolates nonpathogenic to onion from South Africa. Six F. oxysporum f. sp. cepae VCGs (0421 to 0426) were identified, of which three were new. The dominant VCGs in Colorado and South Africa were VCG 0421 (47% of isolates) and VCG 0425 (74%), respectively. VCG 0423 was the only VCG that was shared between the two regions. Molecular phylogenies (intergenic spacer region of the rDNA, elongation factor 1α, and mitochondrial small-subunit) confirmed the polyphyletic nature of F. oxysporum f. sp. cepae and showed that some F. oxysporum f. sp. cepae and nonpathogenic F. oxysporum isolates were genetically related. Most F. oxysporum f. sp. cepae isolates clustered into two distinct, well-supported clades. The largest clade only contained highly virulent isolates, including the two main VCGs (0421 and 0425), whereas the basal clade mostly contained moderately virulent isolates. These groupings along with the VCG data provide an important basis for selection of isolates for use in breeding programs, and for the development of molecular makers to identify VCGs. Mating type genotyping revealed the distribution of both mating type (MAT1-1 and MAT1-2) idiomorphs across phylogenetic clades, and the fact that several isolates contained both idiomorphs.


Plant Disease ◽  
2017 ◽  
Vol 101 (12) ◽  
pp. 2066-2072 ◽  
Author(s):  
A. M. Pastrana ◽  
S. C. Kirkpatrick ◽  
M. Kong ◽  
J. C. Broome ◽  
T. R. Gordon

Fusarium oxysporum has recently been identified as the cause of a wilt disease affecting blackberry in California and Mexico. Thirty-six isolates of F. oxysporum obtained from symptomatic blackberry plants in California and Mexico were comprised of nine distinct somatic compatibility groups (SCGs). Phylogenetic analysis of a concatenated data set, consisting of sequences of the translation elongation factor 1-α and β-tubulin genes and the intergenic spacer of the ribosomal DNA, identified nine three-locus sequence types, each of which corresponded to an SCG. Six SCGs were present only in California, two only in Mexico, and one in both California and Mexico. An isolate associated with the most common SCG in California was tested for pathogenicity on blueberry, raspberry, strawberry, and lettuce. All blueberry, raspberry, and lettuce plants that were inoculated remained healthy, but two of the five strawberry cultivars tested developed symptoms. The three strawberry cultivars that were resistant to the blackberry pathogen were also resistant to F. oxysporum f. sp. fragariae, the cause of Fusarium wilt of strawberry. We propose to designate strains of F. oxysporum that are pathogenic to blackberry as Fusarium oxysporum f. sp. mori forma specialis nov.


Plant Disease ◽  
2020 ◽  
Vol 104 (10) ◽  
pp. 2551-2555
Author(s):  
Luoye Li ◽  
Mengying Lei ◽  
Honghong Wang ◽  
Xiaozhu Yang ◽  
Mebeaselassie Andargie ◽  
...  

Ormosia pinnata (Lour.) Merr. is an important tree used for landscape and plant recovery of barren slopes in China. During an investigation of plant disease on landscape trees in 2018, a dieback was observed on O. pinnata trees in Guangzhou, Guangdong Province, China. Symptoms were characterized by initial dryness of the twigs and eventual death of the whole branch of the tree. Isolations from symptomatic branches yielded 13 isolates including two main morphotypes. Pathogenicity tests showed that isolate GDOP1 from Type I caused dieback of O. pinnata. Based on morphological characteristics and molecular analysis of the internal transcribed spacer rDNA (ITS1-5.8S-ITS2) and partial sequence of the translation elongation factor 1α (EF1-α), the fungus causing dieback on O. pinnata was identified as Lasiodiplodia pseudotheobromae. This is the first report of L. pseudotheobromae infecting O. pinnata in the world.


Plant Disease ◽  
2019 ◽  
Vol 103 (9) ◽  
pp. 2397-2411 ◽  
Author(s):  
Mohamed T. Nouri ◽  
Daniel P. Lawrence ◽  
Leslie A. Holland ◽  
David A. Doll ◽  
Craig E. Kallsen ◽  
...  

A survey was conducted during 2015 and 2016 in pistachio orchards throughout the San Joaquin Valley of California to investigate the occurrence of canker diseases and identify the pathogens involved. Cankers and dieback symptoms were observed mainly in orchards aged >15 years. Symptoms of canker diseases included brown to dark brown discoloration of vascular tissues, wood necrosis, and branch dieback. In total, 58 fungal isolates were obtained from cankers and identified based on multilocus phylogenetic analyses (internal transcribed spacer, glyceraldehyde 3-phosphate dehydrogenase, β-tubulin, calmodulin, actin 1, and translation elongation factor 1α) representing 11 fungal species: Colletotrichum karstii, Cytospora californica, Cytospora joaquinensis, Cytospora parapistaciae, Cytospora pistaciae, Diaporthe ambigua, Didymella glomerata, Diplodia mutila, Neofusicoccum mediterraneum, Phaeoacremonium canadense, and Schizophyllum commune. Pathogenicity tests conducted in the main pistachio cultivars Kerman, Golden Hills, and Lost Hills using the mycelium-plug method indicated that all fungal species were pathogenic to Pistacia vera. All species tested caused cankers in pistachio branches, although virulence among species varied from high to moderate. Overall, N. mediterraneum and Cytospora spp. were the most widespread and virulent species associated with canker diseases of pistachio in California.


Plant Disease ◽  
2005 ◽  
Vol 89 (4) ◽  
pp. 366-372 ◽  
Author(s):  
Y. Kim ◽  
R. B. Hutmacher ◽  
R. M. Davis

Thirty isolates of Fusarium oxysporum f. sp. vasinfectum from California, Australia, China, and the American Type Culture Collection were characterized by partial sequences of translational elongation factor (EF-1α), phosphate permase (PHO), and beta-tubulin (BT) genes, restriction digests of the intergenic spacer (IGS) region of nuclear rDNA, and pathogenicity tests. Based on phylogenetic analysis of combined sequences of EF-1α, PHO, and BT genes, California isolates represented four lineages. Lineage I contained race 3, lineage II contained races 1, 2, and 6, lineage III contained race 8, and lineage IV contained race 4. The Australian isolates formed a strongly supported independent clade. There were nine haplotypes based on restriction digests of the IGS region. In greenhouse pathogenicity tests with California isolates, those from the race 4 lineage were highly aggressive on certain Pima cotton (Gossypium barbadense) cultivars and less aggressive on Upland cotton (Gossypium hirsutum) cultivars. All isolates belonging to the other lineages caused relatively mild symptoms on both Pima and Upland cultivars. This is the first report of the occurrence of races 3, 4, and 8 in California.


Plant Disease ◽  
2020 ◽  
Author(s):  
Dung Le ◽  
Maarten Ameye ◽  
Marthe De Boevre ◽  
Sarah De Saeger ◽  
Kris Audenaert ◽  
...  

Fusarium basal rot (FBR) is particularly problematic to Allium producers worldwide. In Vietnam, information on the profile of FBR is scarce, despite the presence of Fusarium spp. in Allium plants has long been recorded. In the present study, a total of 180 isolates of Fusarium spp. were recovered from Allium bulbs/plants showing symptoms of FBR in 34 commercial Allium fields around Da Lat, Lam Dong (Vietnam). These isolates were identified to the species level by using sequencing the ITS region and the translation elongation factor 1α (TEF-1α) gene. F. oxysporum was found to be most prevalent (81%) in samples from all locations and Allium varieties, followed by F. solani (15%) and F. proliferatum (4%) which was only found in onion (Allium cepa L.). Pathogenicity tests on onion seedlings (56 isolates) and mini bulbs (10 isolates) indicated that onion can be infected by all these species, but that the virulence varied greatly between isolates. Moreover, isolates that were virulent on seedlings were sometimes not virulent on bulbs and vice versa, which points to a specialization of isolates for the host phenology. Mycotoxin analyses showed that the highest amounts of beauvericin were detected in seedlings and bulbs infected by F. oxysporum, whereas F. proliferatum was mainly responsible for the presence of fumonisin B1 in bulbs, suggesting a natural occurrence of beauvericin and fumonisin B1 in onions infected by these pathogens.


Plant Disease ◽  
2015 ◽  
Vol 99 (6) ◽  
pp. 780-787 ◽  
Author(s):  
M. C. Cañizares ◽  
C. Gómez-Lama ◽  
M. D. García-Pedrajas ◽  
E. Pérez-Artés

Fusarium wilt, caused by Fusarium oxysporum f. sp. dianthi, is the most important disease of carnation worldwide. Knowing the diversity of the F. oxysporum f. sp. dianthi population present in a carnation growing area is a key component of preventing dramatic losses in production. Sequence analyses of partial β-tubulin, translation elongation factor 1α genes, and the full-length ribosomal DNA intergenic spacer (IGS) were conducted to resolve phylogenetic relationships in a wide collection of Spanish F. oxysporum f. sp. dianthi isolates, along with some representatives from Italy. We found that, among the three different gene regions, the IGS sequence was the best choice to resolve phylogenetic relationships among F. oxysporum f. sp. dianthi isolates. The phylogenetic tree generated with the complete IGS region was the only one showing a clear clustering of isolates according to the molecular group (virulence grouping) and the vegetative compatibility group. In order to develop a more practical tool based on a shorter DNA sequence to quickly analyze diversity in F. oxysporum f. sp. dianthi populations, we examined IGS nucleotide alignments and identified a region of approximately 300 bp that accumulates enough “informative” changes to resolve intraspecific relationships and determine pathogenic variants in F. oxysporum f. sp. dianthi. Moreover, the “condensed” alignment of this short IGS region showing only the informative positions revealed the existence of virulence group-discriminating positions. In addition to clarifying the phylogenetic relationships among F. oxysporum f. sp. dianthi isolates of the recently described race groups by using multigene genealogies, we have developed simple tools for the phylogenetic analyses of F. oxysporum f. sp. dianthi populations and the determination of the molecular group of uncharacterized F. oxysporum f. sp. dianthi isolates.


Sign in / Sign up

Export Citation Format

Share Document