branch dieback
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 36)

H-INDEX

18
(FIVE YEARS 4)

Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 53
Author(s):  
Angela Brunetti ◽  
Antonio Matere ◽  
Valentina Lumia ◽  
Vittorio Pasciuta ◽  
Valeria Fusco ◽  
...  

Olive trees are infected and damaged by Botryosphaeriaceae fungi in various countries. The botryosphaeriaceous fungus Neofusicoccum mediterraneum is highly aggressive and is a major concern for olive groves in Spain and California (USA), where it causes ‘branch and twig dieback’ characterized by wood discoloration, bark canker, and canopy blight. During surveys of olive groves in Apulia (southern Italy), we noticed that—in some areas—trees were heavily affected by severe branch and twig dieback. In addition, chlorosis and the appearance of red-bronze patches on the leaf preceded the wilting of the foliage, with necrotic leaves persisting on the twigs. Given the severity of the manifestation in zones also subject to olive quick decline syndrome (OQDS) caused by Xylella fastidiosa subsp. pauca, we investigated the etiology and provide indications for differentiating the symptoms from OQDS. Isolation from diseased wood samples revealed a mycete, which was morphologically and molecularly identified as N. mediterraneum. The pathogenicity tests clearly showed that this fungus is able to cause the natural symptoms. Therefore, also considering the low number of tested samples, N. mediterraneum is a potential causal agent of the observed disease. Specifically, inoculation of the twigs caused complete wilting in two to three weeks, while inoculation at the base of the stem caused severe girdling wedge-shaped cankers. The growth rate of the fungus in in vitro tests was progressively higher from 10 to 30 °C, failing to grow at higher temperatures, but keeping its viability even after prolonged exposure at 50 °C. The capacity of the isolate to produce catenulate chlamydospores, which is novel for the species, highlights the possibility of a new morphological strain within N. mediterraneum. Further investigations are ongoing to verify whether additional fungal species are involved in this symptomatology.


Plant Disease ◽  
2021 ◽  
Author(s):  
Carla Calvo-Peña ◽  
María Burgos ◽  
Alba Diez-Galán ◽  
Ana Ibañez ◽  
Juan José R. Coque ◽  
...  

Pleurostoma richardsiae has been described as an olive tree pathogen causing decline and brown wood streaking (Carlucci et al., 2013). A survey was carried out in plots under olive cultivation (Olea europaea L., cv. Picual; 10 year-old plants) at La Garrovilla, (Spain) in September 2020, in which a putative Verticillium wilt had been visually diagnosed. In Plot 1 (2.6 ha; 741 plants), 20.4% of the plants exhibited wilt, foliar browning and leaf drop, twig, and branch dieback. While the level of incidence in plots 2 (4.8 ha; 1368 plants), 3 (3.20 ha; 912 plants), and 4 (1.85 ha; 527 plants) was 25.0%, 19.5%, and 42.9% respectively, which meant for that harvest an average reduction in olive production, and an economic loss, of 30.2%. Three trees from each plot were uprooted and analyzed. Five out of 12 intriguingly showed brown streaking under the bark extending from the root system and ascending up the trunk, a symptom that is never associated with Verticillium dahliae wich does not produce necrosis and cankers in the wood (López-Escudero and Mercado-Blanco, 2011). Samples from the 5 tree trunks showing necrosis were taken to the lab and surface sterilized. Small pieces of discolored wood were placed onto malt extract agar plates containing chloramphenicol (0.25 g/L) and incubated for 21 days at 25°C in darkness. The growing fungal colonies were then transferred to potato dextrose agar (PDA). Isolates were identified by micromorphological characteristics, according to Vijaykrishna et al. (2004), as P. richardsiae. Colonies on PDA were cottony, brown with whitish edge, and produced abundantly two types of conidia: brown (spherical or subglobose), or hyaline (allantoids to cylindrical) that appeared on septated and inconspicuous phialides respectively. Identification was confirmed by amplification and sequencing of the internal transcribed spacer (ITS) region using ITS1/ITS4 primers (White et al., 1990), and partial sequencing of the β-tubulin gene using T1 (O’Donnell and Cigelnik, 1997) and Bt2b (Glass and Donaldson, 1995) primers. ITS sequence showed a 99.82% identity with that of P. richardsiae IFM51337 (CBS406.93 type strain; GenBank AB364703.1), whereas β-tubulin sequence exhibited a 99.77% identity with P. richardsiae CBS406.93 β-tubulin gene (GenBank MT501304.1). ITS and β-tubulin sequences were deposited in GenBank (MZ519916 and MZ542764 respectively). The P. richardsiae isolate has been deposited in the Spanish Type Culture Collection (CECT 21196). Pathogenicity tests were conducted on 1-year old potted olive plants cv. Picual, maintained in a growth chamber at 25ºC and 12-h dark/12-h light. Twelve plants were inoculated in a wound made in the stem with a scalpel, and mycelial plug (5 mm diameter) from 15-day-old PDA plates were inserted into the wound. Another set of 12 plants were inoculated with sterile agar plugs and used as negative control plants. Four months after inoculation, 66% of the plants inoculated with mycelia plugs, showed wilting, necrosis under the bark, or even had died. P. richardsiae was successfully reisolated from necrotic areas in 75% of the plants inoculated with mycelia plugs. A total of 10 reisolates were identified as P. richardsiae by the above molecular techniques to confirm Koch's postulates. No symptoms were observed in the negative control plants and the pathogen was not re-isolated from them either. To our knowledge, this is the first report of P. richardsiae associated with twig and branch dieback of olive trees in Spain.


Author(s):  
Emel Ören ◽  
Gülsüm Palacıoğlu ◽  
Gülden Koca ◽  
Gülten Nisan Ozan ◽  
Harun Bayraktar

2021 ◽  
Vol 886 (1) ◽  
pp. 012099
Author(s):  
F A Faradilla ◽  
I Prihatini ◽  
Suranto

Abstract Austropuccinia psidii is an invasive pathogenic rust that infects the Myrtaceae family. This rust is a threat to Myrtaceae plantations around the world due to its widespread distribution. In this study, we observed the presence of A. psidii in three species of Myrtaceae, i.e. Melaleuca cajuputi, Syzygium myrtifolium, and Syzygium polyanthum planted in Yogyakarta and Sukabumi. The symptoms of infection were yellow-reddish spot in young leaves, presence of urediniospores in infected spot, foliage, and branch dieback. To confirm the presence of A. psidii on those trees, a molecular detection was performed using specific primer for A. psidii (Ppsi1/Ppsi6) on DNA samples extracted from diseased leaves. The presence of A. psidii was proved by the presence of DNA amplicon sized around 500bp in all samples collected from three different hosts. In this study, S. myrtifolium was firstly reported to be infected by this rust in Indonesia. Further study about the presence and the economic impact of this pathogen in Indonesia should be conducted. Indonesia has many species numbers of Myrtaceae and some species are important for medicines, herbs, foods, and as industrial plants. A strategy to control this pathogen should be established to avoid large economic losses in Myrtaceae plantations in Indonesia.


2021 ◽  
Vol 4 ◽  
Author(s):  
Sabine Braun ◽  
Sven-Eric Hopf ◽  
Simon Tresch ◽  
Jan Remund ◽  
Christian Schindler

European beech is one of the most important deciduous tree species in natural forest ecosystems in Central Europe. Its dominance is now being questioned by the emerging drought damages due to the increased incidence of severe summer droughts. In Switzerland, Fagus sylvatica have been observed in the Intercantonal Forest Observation Program since 1984. The dataset presented here includes 179176 annual observations of beech trees on 102 plots during 37 years. The plots cover gradients in drought, nitrogen deposition, ozone, age, altitude, and soil chemistry. In dry regions of Switzerland, the dry and hot summer of 2018 caused a serious branch dieback, increased mortality in Fagus sylvatica and increased yellowing of leaves. Beech trees recovered less after 2018 than after the dry summer 2003 which had been similar in drought intensity except that the drought in 2018 started earlier in spring. Our data analyses suggest the importance of drought in subsequent years for crown transparency and mortality in beech. The drought in 2018 followed previous dry years of 2015 and 2017 which pre-weakened the trees. Our long-term data indicate that the drought from up to three previous years were significant predictors for both tree mortality and for the proportion of trees with serious (>60%) crown transparency. The delay in mortality after the weakening event suggests also the importance of weakness parasites. The staining of active vessels with safranine revealed that the cavitation caused by the low tree water potentials in 2018 persisted at least partially in 2019. Thus, the ability of the branches to conduct water was reduced and the branches dried out. Furthermore, photooxidation in light-exposed leaves has increased strongly since 2011. This phenomenon was related to low concentrations of foliar phosphorus (P) and hot temperatures before leaf harvest. The observed drought effects can be categorized as (i) hydraulic failure (branch dieback), (ii) energy starvation as a consequence of closed stomata and P deficiency (photooxidation) and (iii) infestation with weakness parasites (beech bark disease and root rots).


Author(s):  
Emel Ören ◽  
Gülsüm Palacıoğlu ◽  
Gülten Nisan Ozan ◽  
Kenan Çelik ◽  
Harun Bayraktar

Author(s):  
Nurbailis Jamarun ◽  
Rummah Yulisyah ◽  
Novri Nelly
Keyword(s):  

Branch dieback is one of the primary diseases in cacao plants. The disease affects young shoots and twigs, causes leaves to die, and leaves them bare, interfering with photosynthesis. This study aimed to determine the causative pathogens in Padang City. The locations were: Sungai Sarik Kuranji, Lubuk Minturun Koto Tangah, and Teluk Kabung Bungus. The locations have the following criteria: age ? three years, the number of plants at the location ? 50 individuals, and found symptoms of branch dieback. The research used descriptive methods. The sample represented 10% of the total number of plants at the location, was collected randomly. The results found four species of fungi associated with the disease, namely Oncobasidium theobromae, Botrydiplodia theobromae, Fusarium decemcellulare, and Fusarium sp1.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jian Rong Tang ◽  
Yue Lian Liu ◽  
Xue Gui Yin ◽  
Jian Nong Lu ◽  
Yu Han Zhou

Castor bean (Ricinus communis L.) is an oil crop of significant economic importance in the industry and medicine. In August 2019, a branch dieback disease was observed on castor bean in a field in Zhanjiang (21.17°N, 110.18°E), China. The incidence rate was 35% (n=600 investigated plants). Symptoms were discoloration of leaves, branch dieback, and discoloration of internal stem tissues. The disease had spread to the whole branches and causing the plant to die. Seven diseased branches were collected from seven plants. Margins between healthy and diseased tissues were cut into 2 mm × 2 mm pieces. The surfaces were disinfested with 75% ethanol for 30 s and 2% sodium hypochlorite for 60 s. Then, the samples were rinsed thrice in sterile water, placed on PDA, and incubated at 28 °C. Pure cultures were obtained by transferring the hyphal tips to new PDA plates. Eighteen isolates were obtained (the isolate rate of 75%), which were the same fungus on the basis of morphological characteristics and molecular analysis of the internal transcribed spacer (ITS). A single representative isolate (RiB-1) was used for further study. The colony of RiB-1 was 5 cm in diameter on the 5th day on the PDA culture. The colony was greenish gray with an irregularly distributed and fluffy aerial mycelium, which turned black after 10 days. The mature conidia were 21.3–26.5 µm × 12.2–15.7 µm in size (n=100) and had two ovoid, dark brown cells with longitudinal striations. The morphological characteristics of the colonies were consistent with the description of Lasiodiplodia sp. (Alves et al. 2008). Three regions of the ITS, translation elongation factor (EF1-α), and β-tubulin genes were amplified and sequenced with the primer pairs ITS1/ITS4 (White et al. 1990), EF1-728F/EF1-986R (Alves et al. 2008), and Bt2a/Bt2b (Glass and Donaldson 1995), respectively. The resulting sequences were deposited in the GenBank under accession numbers MN759432 (ITS), MN719125 (EF1-α), and MN719128 (β-tubulin). BLASTn analysis demonstrated that these sequences were 100% identical to the corresponding ITS (MK530052), EF1-α (MK423878), and β-tubulin (MN172230) sequences of L. theobromae. Based on the morphological and molecular data, RiB-1 was determined as L. theobromae. A pathogenicity test was performed in a greenhouse with 80% relative humidity at 25 °C to 30 °C. Ten healthy plants of Zi Bi No. 5 castor bean (1-month-old) were grown in pots with one plant in each pot. Five pots were wound-inoculated with 5-mm-diameter mycelial plugs obtained from 7-day cultures. Five additional pots treated with PDA plugs served as the controls. Inoculated stems were moisturized with sterile cotton for five days. The test was conducted three times. Disease symptoms, similar to those in the field, were observed on the inoculated plants two weeks after inoculation, and L. theobromae was 100% reisolated from the inoculated plants. The control plants remained symptomless, and reisolations were unsuccessful. These results consistent with Koch’s postulates. L. theobromae (Lima et al. 1997) and L. hormozganensis (Fábio et al. 2018) had been reported to cause stem rot on castor bean in Brazil, but whether L. theobromae caused the branch dieback on castor bean in China has not been reported yet. Thus, this study is the first report of L. theobromae causing the branch dieback on castor bean in Zhanjiang, China. This study provides an important reference for the control of the disease.


2021 ◽  
Author(s):  
Emilee M Poole ◽  
Michael D Ulyshen ◽  
Scott Horn ◽  
Patrick Anderson ◽  
Chip Bates ◽  
...  

Abstract The southeastern United States has been experiencing unexplained sugarberry (Celtis laevigata) mortality for over a decade, representing one of the most severe and widespread Celtis mortality episodes ever reported from North America. Here we describe external symptoms, progression of mortality, and the known geographic extent of the problem. More than half of all trees monitored at one site within the affected area died over five years of observation. Although many trees died within a year of first exhibiting symptoms (e.g., small yellow leaves, branch dieback, premature leaf fall), many others continued living for years after becoming symptomatic. A preliminary insecticide trial found no improvements in survivorship among trees treated with insecticides, emamectin benzoate and imidacloprid, relative to control trees. Our findings suggest the problem will likely continue and become more widespread in the coming years. Study Implications Sugarberry mortality in urban and forested environments is an ongoing problem that has the potential to spread throughout the southeastern United States and perhaps more widely, depending on the susceptibility of other native Celtis species. Many trees die within a year of first showing external symptoms, whereas others can live for many years after appearing symptomatic. Declining trees in rights-of-way and public spaces are presenting costly hazards to cities, and canopy gaps in natural areas are likely to facilitate the establishment and spread of invasive plants. Studies aimed at determining the cause of this problem are urgently needed.


2021 ◽  
Vol 16 (1) ◽  
pp. 7-14
Author(s):  
G. Venkatesan ◽  
P.S. Sharavanan

The Citrus maxima, commonly called pummelo, are a Rutaceae family. The Canker disease recently had an issue on Citrus species in the Delta region of Tamil Nadu. This disease is appeared by foamy oozes from the bark. The infected plant dies slowly in a short period. This study was identified the microorganism causes of foamy disease from bark and infected area. Totally 19 fungi were isolated. Among these 16 fungi were isolated from uninfected bark, 3 fungal species belonging to Ascomycetes, 2 fungal species belonging to Coelomycetes, and 10 species be classed Hyphomycetes and one sterile form, though 11 fungal species were isolated from infected bark foamy ooze, eight Hyphomycetes, one Oomycete, and two sterile forms were isolated. The RPO statistical analysis resulted, the bark fungi have been separated a group fungus from foamy fungi such a few fungi as the Fusarium, Phytophthora, and yeast have isolated in the foam. Also, the Jaccard’s similarity showed 42.105% and dissimilar among to the bark and foamy fungus. The plant was decay, branch dieback and tree death may induce by fungi also that the Canker disease on Citrus may be caused by Phytophthora fungal species.


Sign in / Sign up

Export Citation Format

Share Document