fusarium basal rot
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 16)

H-INDEX

8
(FIVE YEARS 1)

Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 538
Author(s):  
Elizabeth Straley ◽  
Jen Colcol Marzu ◽  
Michael J. Havey

Fusarium basal rot (FBR) is a serious disease of onion (Allium cepa). We identified sources of FBR resistance, assessed efficacy of selection for increased resistance, and investigated its genetic control. Onion accessions were evaluated for FBR resistance, and percentage survival ranged from 0% to 78%. Survivors were intercrossed, and progenies from one cycle of selection showed increased survival by 18% to 52%. Selections were crossed to male-sterile lines, and hybrids showed specific combining ability for FBR resistance. Segregating families were produced, and quantitative trait loci (QTLs) were identified on chromosomes 2 and 4 conditioning FBR resistance. A second QTL on chromosome 4 was identified that decreased FBR resistance. Plants from families with different genotypes across the 1.5 logarithm of odds (LOD) regions on chromosomes 2 and 4 were self-pollinated, and resulting families were evaluated for FBR survival. Genomic regions on chromosomes 2 and 4 associated with resistance were validated at p = 0.05 and 0.10, respectively. The region on chromosome 4 associated with increased susceptibility was validated at p = 0.05. These results are in agreement with previous studies reporting high heritability and specific combining ability for FBR resistance and should be useful for selection of FBR-resistant onion.


Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 168
Author(s):  
Subhankar Mandal ◽  
Christopher S. Cramer

Fusarium basal rot (FBR) of onion, caused by the soil-borne fungus Fusarium oxysporum f.sp. cepae (FOC), results in a substantial storage loss of marketable bulbs. Seedling and field screening methods, which were used to generate FBR resistant long-day and intermediate-day onion cultivars, were found to be ineffective at increasing FBR resistance in short-day onion cultivars. This study attempted to improve the FBR resistance of seven commercial short-day onion cultivars and two check cultivars when evaluated at their mature bulb stage. Mature bulbs were artificially inoculated with 1 cm diameter potato dextrose agar plugs containing conidia of a virulent FOC isolate, CSC-515, at a concentration of 3 × 104 spore mL−1, after transversely cutting the basal plate tissue. Incubated bulbs, which had few or no FBR symptoms, were selected after 20 d using visual scoring, from 1 (no disease) to 9 (>70% basal plate is infected), and combined in seed production cages to produce the selected generation of a cultivar. Multiple cycles of phenotypic recurrent selection were conducted, and the resultant populations were compared with their respective original populations for FBR severity and incidence, from 2016 to 2019, using the same conidial inoculation method. A variable amount of progress was achieved in reducing FBR severity and incidence in the seven cultivars, with maximum improvement in the most advanced selected populations. FBR development in the advanced selected populations differed between mature bulbs of each entry and was influenced by yearly environmental variation. The progress of FOC infections was slower in resistant bulbs when compared to susceptible bulbs. These results indicated a partial or quantitative resistance against FBR. The partial FBR resistant cultivar populations could be used to develop synthetic short-day FBR resistant cultivars after multi-locational and multi-seasonal field trials. These populations could also be used to study the mechanism(s) of FBR resistance in onion, which has yet to be determined.


Horticulturae ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 156
Author(s):  
Subhankar Mandal ◽  
Christopher S. Cramer

Development of resistant cultivars for Fusarium basal rot (FBR), a fungal disease caused by the soil-borne fungus Fusarium oxysporum f.sp. cepae (FOC), is a major breeding goal for onion breeding programs around the world. Currently, the selection of FBR-resistant bulbs is based on a visual interval or category scale, which is an entirely subjective method. This study aimed to develop an objective approach using digital image analysis to quantify symptom development in the basal plate of dormant bulbs. Digital image analyses were performed after artificially inoculating dormant bulbs of eighty-five United States Department of Agriculture (USDA) Allium cepa accessions with a virulent FOC isolate, ‘CSC-515’. An analysis with confocal microscopy identified bright blue–green autofluorescence from FOC-infected tissue, effectively differentiating diseased from healthy tissue. Visual scoring of the FBR symptom was aided by stereo fluorescence microscopic images captured using a green fluorescence protein dual filter to quantify accurately FBR severity in the basal plate tissue. An automatic stepwise image segmentation method was developed that was relatively more accurate than a visual estimation. This method exhibited comparable reliability and precision to visual scoring, but it tended to underestimate FOC infection. To our best knowledge, this is the first comprehensive study to investigate the potential use of image analysis as a viable alternative to conventional visual scoring for FBR symptom development. This method could be used for developing resistant cultivars for onion breeding programs in the near future.


Author(s):  
Dung Le ◽  
Kris Audenaert ◽  
Geert Haesaert

AbstractFusarium basal rot (FBR) is a soil-borne disease that affects Allium species worldwide. Although FBR has long been recognized as a major constraint to the production of economically important Allium species, information that could support disease management remains scattered. In this review, the current knowledge on the causal agents, symptomology and epidemiology, impact, and management strategies of FBR is synthesized. We highlight that FPR is associated with different complexes of several Fusarium species, of which Fusarium oxysporum and F. proliferatum are the most prevalent. These pathogenic complexes vary in composition and virulence, depending on sites and hosts, which can be challenging for disease management. Research to improve disease management using chemical pesticides, resistance cultivars, biocontrol agents, and cultural practices has achieved both promising results and limitations. Finally, research needs and future directions are proposed for the development of effective FBR management strategies.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 482
Author(s):  
Christopher S. Cramer ◽  
Subhankar Mandal ◽  
Suman Sharma ◽  
Seyed Shahabedddin Nourbakhsh ◽  
Irwin Goldman ◽  
...  

Onions are one of the most important vegetable crops worldwide. However, their production faces many challenges. Genetic improvement is one mechanism to address those challenges. In this review, we discuss recent research pertaining to the diseases Fusarium basal rot and Iris yellow spot, the insect pest onion thrips, onion pungency, and dormancy. Recent research for screening onion bulbs for Fusarium basal rot resistance has resulted in improved screening techniques and germplasm exhibiting less disease when inoculated with the disease-causing pathogen. Improved screening methods have resulted in germplasm exhibiting fewer and less severe Iris yellow spot symptoms when onion thrips and conducive environmental conditions are present. Onion germplasm with less and differing compositions of epicuticular wax on their leaves have shown a nonpreference for thrips feeding and have the potential for developing thrips tolerant cultivars. Conventional breeding efforts and genetic manipulation of the genes producing alliinase and lachrymatory factor synthase has resulted in low pungency, tearless onions. In long-day onions, an annual generation time has been achieved by artificially breaking bulb dormancy early while ensuring proper vernalization has been completed. Genetic improvement of these and many other onion traits will continue and result in better production in the future.


2021 ◽  
Vol 37 (4) ◽  
Author(s):  
Muhammad Madni Afzal ◽  
Shahbaz Talib Sahi ◽  
Amer Habib ◽  
Waqas Ashraf ◽  
Muhammad Ahmad Zeshan ◽  
...  

Plant Disease ◽  
2020 ◽  
Author(s):  
Dung Le ◽  
Maarten Ameye ◽  
Marthe De Boevre ◽  
Sarah De Saeger ◽  
Kris Audenaert ◽  
...  

Fusarium basal rot (FBR) is particularly problematic to Allium producers worldwide. In Vietnam, information on the profile of FBR is scarce, despite the presence of Fusarium spp. in Allium plants has long been recorded. In the present study, a total of 180 isolates of Fusarium spp. were recovered from Allium bulbs/plants showing symptoms of FBR in 34 commercial Allium fields around Da Lat, Lam Dong (Vietnam). These isolates were identified to the species level by using sequencing the ITS region and the translation elongation factor 1α (TEF-1α) gene. F. oxysporum was found to be most prevalent (81%) in samples from all locations and Allium varieties, followed by F. solani (15%) and F. proliferatum (4%) which was only found in onion (Allium cepa L.). Pathogenicity tests on onion seedlings (56 isolates) and mini bulbs (10 isolates) indicated that onion can be infected by all these species, but that the virulence varied greatly between isolates. Moreover, isolates that were virulent on seedlings were sometimes not virulent on bulbs and vice versa, which points to a specialization of isolates for the host phenology. Mycotoxin analyses showed that the highest amounts of beauvericin were detected in seedlings and bulbs infected by F. oxysporum, whereas F. proliferatum was mainly responsible for the presence of fumonisin B1 in bulbs, suggesting a natural occurrence of beauvericin and fumonisin B1 in onions infected by these pathogens.


HortScience ◽  
2020 ◽  
Vol 55 (11) ◽  
pp. 1840-1847
Author(s):  
Subhankar Mandal ◽  
Christopher S. Cramer

Fusarium basal rot (FBR) of onion, which is caused by Fusarium oxysporum f.sp. cepae (Hanzawa) Snyder & Hansen (FOC) results in a substantial loss of marketable bulbs worldwide. One of the main reasons for the lack of FBR-resistant short-day cultivars is the unreliable screening methods available for the mature bulb stage when significant economic damage occurs. The objective of this study was to develop an artificial inoculation method with better quantification of inoculum for an effective selection of FBR-resistant mature onion bulbs. Mature bulbs of seven New Mexican short-day onion cultivars, along with susceptible and tolerant controls, were selected and evaluated for FBR resistance using mycelial and conidial inoculation methods, respectively. Transversely cut basal plates of mature bulbs were inoculated artificially with mycelia or conidia (12 × 105 spores/mL in 2014 and 3 × 105 spores/mL in 2015 embedded in potato dextrose agar plug) of a virulent FOC isolate ‘CSC-515’. Mature bulb evaluation using a visual rating scale (1 = no disease; 9 = >70% basal plate infected) revealed a high degree of FBR severity and incidence irrespective of the genetic background of the cultivars, minimizing the chance of disease escape, which is a significant problem in field inoculation. An attempt to inoculate intact basal plates postharvest resulted in minimal disease development, suggesting that mechanical resistance was conferred by the dry outer layer of the basal plate. The high selection pressure conferred by the conidial inoculation method developed in this study can effectively screen FBR-resistant onion bulbs to replace an unreliable field screening. Concentrations of the conidia lower than 3 × 105 spores/mL are recommended to detect subtle genetic differences in FBR resistance among the onion cultivars and their selected population.


Sign in / Sign up

Export Citation Format

Share Document