scholarly journals Fusarium oxysporumf. sp.mori, a New Forma Specialis Causing Fusarium Wilt of Blackberry

Plant Disease ◽  
2017 ◽  
Vol 101 (12) ◽  
pp. 2066-2072 ◽  
Author(s):  
A. M. Pastrana ◽  
S. C. Kirkpatrick ◽  
M. Kong ◽  
J. C. Broome ◽  
T. R. Gordon

Fusarium oxysporum has recently been identified as the cause of a wilt disease affecting blackberry in California and Mexico. Thirty-six isolates of F. oxysporum obtained from symptomatic blackberry plants in California and Mexico were comprised of nine distinct somatic compatibility groups (SCGs). Phylogenetic analysis of a concatenated data set, consisting of sequences of the translation elongation factor 1-α and β-tubulin genes and the intergenic spacer of the ribosomal DNA, identified nine three-locus sequence types, each of which corresponded to an SCG. Six SCGs were present only in California, two only in Mexico, and one in both California and Mexico. An isolate associated with the most common SCG in California was tested for pathogenicity on blueberry, raspberry, strawberry, and lettuce. All blueberry, raspberry, and lettuce plants that were inoculated remained healthy, but two of the five strawberry cultivars tested developed symptoms. The three strawberry cultivars that were resistant to the blackberry pathogen were also resistant to F. oxysporum f. sp. fragariae, the cause of Fusarium wilt of strawberry. We propose to designate strains of F. oxysporum that are pathogenic to blackberry as Fusarium oxysporum f. sp. mori forma specialis nov.

Plant Disease ◽  
2020 ◽  
Vol 104 (6) ◽  
pp. 1811-1816
Author(s):  
Kelley R. Paugh ◽  
Thomas R. Gordon

Fusarium wilt of lettuce, caused by Fusarium oxysporum f. sp. lactucae, is now found in all major lettuce producing regions in California and Arizona. The population structure of F. oxysporum f. sp. lactucae in California and Arizona was characterized based on somatic compatibility and sequences of the translation elongation factor 1-α gene (EF-1α) and rDNA intergenic spacer region (IGS). In this study, 170 isolates were tested for somatic compatibility based on heterokaryon formation, using complementary nitrate nonutilizing (nit) mutants. Five subgroups (A to E) of somatic compatibility group 0300 were identified. Isolates associated with the same subgroup had a strong complementation reaction, whereas reactions between isolates of different subgroups were weak or delayed. An isolate from the first known infestation of Fusarium wilt of lettuce in California was associated with subgroup A, which predominated among isolates in our collection. Isolates representative of each subgroup were confirmed to be associated with race 1, based on the reaction of differential lettuce cultivars. It is possible that somatic compatibility subgroups B to E of F. oxysporum f. sp. lactucae were derived from subgroup A, as a consequence of somatic mutations affecting compatibility. If so, subgroups of F. oxysporum f. sp. lactucae may represent an intermediate step in divergence that will lead to clearly separable compatibility groups. Sequences of EF-1α and IGS were both identical for 58 isolates of F. oxysporum f. sp. lactucae that represented all somatic compatibility subgroups and locations from which isolates were obtained, indicating that subgroups were derived from the same clonal lineage (VCG 0300).


Plant Disease ◽  
2010 ◽  
Vol 94 (1) ◽  
pp. 31-38 ◽  
Author(s):  
M. L. Elliott ◽  
E. A. Des Jardin ◽  
K. O'Donnell ◽  
D. M. Geiser ◽  
N. A. Harrison ◽  
...  

A new disease of Syagrus romanzoffiana (queen palm) and Washingtonia robusta (Mexican fan palm) has spread across the southern half of Florida during the past 5 years. The initial foliar symptom is a one-sided chlorosis or necrosis of older leaf blades, with a distinct reddish-brown stripe along the petiole and rachis and an associated discoloration of internal tissue. Within 2 to 3 months after onset of symptoms, the entire canopy becomes desiccated and necrotic but the leaves do not droop or hang down around the trunk. Based on pathogenicity and morphological and molecular characterization, the etiological agent has been identified as a new forma specialis of Fusarium oxysporum, designated f. sp. palmarum. Sequence analysis of a portion of the translation elongation factor 1-α gene (EF-1α) separated 27 representative isolates into two EF-1α groups, which differed by two transition mutations. Members of both EF-1α groups are pathogenic on both species of palm. A phylogenetic analysis inferred from partial EF-1α sequences from a genetically diverse set of F. oxysporum isolates, including three other formae speciales pathogenic on palm (i.e., f. sp. albedinis, f. sp. canariensis, and f. sp. elaeidis), suggested that f. sp. palmarum and f. sp. albedinis may be more closely related to one another than either is to the two other palm pathogens.


Plant Disease ◽  
2018 ◽  
Vol 102 (3) ◽  
pp. 552-560 ◽  
Author(s):  
Patrick Karangwa ◽  
Diane Mostert ◽  
Privat Ndayihanzamaso ◽  
Thomas Dubois ◽  
Björn Niere ◽  
...  

Banana Fusarium wilt is a major production constraint globally and a significant threat to the livelihoods of millions of people in East and Central Africa (ECA). A proper understanding of the diversity and population dynamics of the causal agent, Fusarium oxysporum f. sp. cubense (Foc), could be useful for the development of sustainable disease management strategies for the pathogen. The current study investigated the diversity of Foc in ECA using vegetative compatibility group (VCG) analysis, PCR-RFLPs of the ribosomal DNA’s intergenic spacer region, as well as phylogenetic analysis of the elongation factor-1α gene. Six VCGs (0124, 0125, 0128, 01212, 01220, and 01222), which all belong to one lineage (Foc lineage VI), were widely distributed throughout the region. VCGs 0128 and 01220 are reported for the first time in Burundi, the Democratic Republic of Congo (DRC), Rwanda, Tanzania, and Uganda, while VCG 01212 is reported in the DRC and Rwanda. Isolates that did not belong to any of the known VCGs were identified as Foc lineage VI members by phylogenetic analysis and may represent novel VCGs. CAV 2734, a banana pathogen collected in Rwanda, clustered with nonpathogenic F. oxysporum isolates in lineage VIII. Results from this study will contribute significantly toward the implementation of banana Fusarium wilt disease management practices in the region, such as the restricted movement of infected planting material and the selective planting of resistant banana varieties.


2020 ◽  
Vol 110 (5) ◽  
pp. 1093-1104
Author(s):  
Yinghui Duan ◽  
Wenwen Qu ◽  
Shuxian Chang ◽  
Chun Li ◽  
Fangfang Xu ◽  
...  

Fusarium oxysporum f. sp. sesami is an extremely destructive pathogen, causing sesame Fusarium wilt disease worldwide. To clarify the pathogenicity and the genetic characters of F. oxysporum f. sp. sesami, we systematically investigated 69 F. oxysporum isolates collected from major sesame-growing areas in China. Among these isolates, 54 isolates were pathogenic and 15 were nonpathogenic according to pathogenicity testing on sesame seedlings. For the pathogenic isolates, three F. oxysporum f. sp. sesami pathogenicity groups were defined based on the three differential sesame hosts for the first time. A translation elongation factor 1α gene tree was constructed to determine the genetic diversity of the F. oxysporum isolates but could not separate F. oxysporum f. sp. sesami isolates from the nonpathogenic isolates and other F. oxysporum formae speciales. Ten secreted-in-xylem (SIX) genes (one family of effectors) were identified in F. oxysporum f. sp. sesami isolates by a search with the genome data, and were subsequently screened in the 69 F. oxysporum isolates. Compared with the SIX gene profiles in other F. oxysporum formae speciales, the presence and sequence variations of the SIX gene homologs directly correlated with the specific pathogenicity of F. oxysporum f. sp. sesami toward sesame. Furthermore, eight of these F. oxysporum f. sp. sesami SIX genes were significantly expressed in sesame plants as infection of the F. oxysporum f. sp. sesami isolate. These findings have important significance for understanding the pathogenic basis of F. oxysporum f. sp. sesami isolates, and will contribute to improve the diagnostics to effectively control Fusarium wilt disease in sesame.


2015 ◽  
Vol 105 (4) ◽  
pp. 525-532 ◽  
Author(s):  
Kazunori Sasaki ◽  
Katsuya Nakahara ◽  
Shuhei Tanaka ◽  
Masayoshi Shigyo ◽  
Shin-ichi Ito

Fusarium oxysporum f. sp. cepae causes Fusarium basal rot in onion (common onion) and Fusarium wilt in Welsh onion. Although these diseases have been detected in various areas in Japan, knowledge about the genetic and pathogenic variability of F. oxysporum f. sp. cepae is very limited. In this study, F. oxysporum f. sp. cepae was isolated from onion and Welsh onion grown in 12 locations in Japan, and a total of 55 F. oxysporum f. sp. cepae isolates (27 from onion and 28 from Welsh onion) were characterized based on their rDNA intergenic spacer (IGS) and translation elongation factor-1α (EF-1α) nucleotide sequences, vegetative compatibility groups (VCGs), and the presence of the SIX (secreted in xylem) homologs. Phylogenetic analysis of IGS sequences showed that these isolates were grouped into eight clades (A to H), and 20 onion isolates belonging to clade H were monophyletic and assigned to the same VCG. All the IGS-clade H isolates possessed homologs of SIX3, SIX5, and SIX7. The SIX3 homolog was located on a 4 Mb-sized chromosome in the IGS-clade H isolates. Pathogenicity tests using onion seedlings showed that all the isolates with high virulence were in the IGS-clade H. These results suggest that F. oxysporum f. sp. cepae isolates belonging to the IGS-clade H are genetically and pathogenically different from those belonging to the other IGS clades.


Plant Disease ◽  
2015 ◽  
Vol 99 (6) ◽  
pp. 780-787 ◽  
Author(s):  
M. C. Cañizares ◽  
C. Gómez-Lama ◽  
M. D. García-Pedrajas ◽  
E. Pérez-Artés

Fusarium wilt, caused by Fusarium oxysporum f. sp. dianthi, is the most important disease of carnation worldwide. Knowing the diversity of the F. oxysporum f. sp. dianthi population present in a carnation growing area is a key component of preventing dramatic losses in production. Sequence analyses of partial β-tubulin, translation elongation factor 1α genes, and the full-length ribosomal DNA intergenic spacer (IGS) were conducted to resolve phylogenetic relationships in a wide collection of Spanish F. oxysporum f. sp. dianthi isolates, along with some representatives from Italy. We found that, among the three different gene regions, the IGS sequence was the best choice to resolve phylogenetic relationships among F. oxysporum f. sp. dianthi isolates. The phylogenetic tree generated with the complete IGS region was the only one showing a clear clustering of isolates according to the molecular group (virulence grouping) and the vegetative compatibility group. In order to develop a more practical tool based on a shorter DNA sequence to quickly analyze diversity in F. oxysporum f. sp. dianthi populations, we examined IGS nucleotide alignments and identified a region of approximately 300 bp that accumulates enough “informative” changes to resolve intraspecific relationships and determine pathogenic variants in F. oxysporum f. sp. dianthi. Moreover, the “condensed” alignment of this short IGS region showing only the informative positions revealed the existence of virulence group-discriminating positions. In addition to clarifying the phylogenetic relationships among F. oxysporum f. sp. dianthi isolates of the recently described race groups by using multigene genealogies, we have developed simple tools for the phylogenetic analyses of F. oxysporum f. sp. dianthi populations and the determination of the molecular group of uncharacterized F. oxysporum f. sp. dianthi isolates.


Plant Disease ◽  
2021 ◽  
pp. PDIS-06-20-1297
Author(s):  
Ana M. Pastrana ◽  
Dean C. Watson ◽  
Thomas R. Gordon

Fusarium oxysporum f. sp. mori, the causal agent of Fusarium wilt of blackberry, was first reported in California and Mexico in 2016. A limited survey of the population revealed this pathogen to be one of the most diverse formae speciales of F. oxysporum. We explored the possibility that strains of F. oxysporum pathogenic to commercial blackberry could also be recovered from wild blackberry (Rubus spp.) in California. For this purpose, wild Rubus species in blackberry nurseries, fruit production fields, and nearby areas were collected between 2017 and 2019. Thirty-four isolates of F. oxysporum were recovered from asymptomatic Rubus armeniacus and Rubus ursinus plants. Based on sequence of the translation elongation factor 1-α, somatic compatibility, and pathogenicity to blackberry, 16 isolates were confirmed as F. oxysporum f. sp. mori. These isolates were associated with three somatic compatibility groups, one of which was first identified in this study. Recovery of the pathogen confirmed that wild blackberry plants can act as a reservoir of inoculum of F. oxysporum f. sp. mori and that it can move from wild blackberry plants to commercial cultivars or vice versa.


Plant Disease ◽  
2009 ◽  
Vol 93 (12) ◽  
pp. 1298-1304 ◽  
Author(s):  
E. A. Holmes ◽  
R. S. Bennett ◽  
D. W. Spurgeon ◽  
P. D. Colyer ◽  
R. M. Davis

Sixty-one isolates of Fusarium oxysporum f. sp. vasinfectum were collected from cotton plants (Gossypium spp.) with symptoms of Fusarium wilt to determine the composition of races present in the southeastern United States. Analysis of partial sequences of the translation elongation factor gene revealed four novel genotypes, as well as the presence of races 3 and 8 for the first time in the United States outside of California. The majority of isolates (16 of 27) sampled from Arkansas were novel genotypes. A subset of isolates representing the novel genotypes was compared with previously described races using sequences from translation elongation factor, phosphate permase, and β-tubulin genes and their pathogenicity on a total of six Upland (Gossypium hirsutum) and Pima (G. barbadense) cotton cultivars. Two of the novel genotypes belonged to a clade containing races 1, 2, 4, 6, and 8 and two shared ancestry with race 3. All new genotypes were pathogenic to at least some of the cotton cultivars tested. The Pima cv. Phytogen 800 was relatively resistant to all genotypes of the pathogen. These results indicate that the population of F. oxysporum f. sp. vasinfectum in the southeastern United States is more diverse than previously recognized.


Plant Disease ◽  
2009 ◽  
Vol 93 (1) ◽  
pp. 58-66 ◽  
Author(s):  
Michael J. Wunsch ◽  
Alexandra H. Baker ◽  
David W. Kalb ◽  
Gary C. Bergstrom

Fusarium wilt, a vascular wilt caused by Fusarium oxysporum, has been a serious problem for birdsfoot trefoil (Lotus corniculatus) production in parts of New York and Vermont since the 1970s, causing wilt, severe root necrosis, and rapid plant death. Analysis of F. oxysporum isolates causing this disease indicated that the pathogen has a unique host range relative to previously designated F. oxysporum formae speciales and is monophyletic. Pathogenic isolates from New York and Vermont caused severe vascular wilt of trefoil and moderate vascular wilt of pea but no disease on alfalfa, red clover, soybean, or dry bean. The host range of trefoil isolates was distinct from F. oxysporum isolates pathogenic to other legumes. F. oxysporum isolates pathogenic to trefoil belonged to a single vegetative compatibility group separate from nonpathogenic isolates and shared identical mitochondrial small subunit rDNA, translation elongation factor 1-alpha, and nuclear rDNA intergenic spacer haplotypes. Phylogenetic analysis of the concatenated sequence data assigned isolates pathogenic to trefoil to a single, well-supported clade distinct from other pathogenic F. oxysporum. We propose designating the fungus Fusarium oxysporum Schlechtendahl emend. Snyder & Hansen f. sp. loti forma specialis nova.


Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1156-1165 ◽  
Author(s):  
M. A. Bautista-Cruz ◽  
G. Almaguer-Vargas ◽  
S. G. Leyva-Mir ◽  
M. T. Colinas-León ◽  
K. C. Correia ◽  
...  

Persian lime (Citrus latifolia Tan.) is an important and widely cultivated fruit crop in several regions of Mexico. In recent years, severe symptoms of gummosis, stem cankers, and dieback were detected in the Persian lime-producing region in the states of Veracruz and Puebla, Mexico. The aims of this study were to identify the species of Lasiodiplodia associated with these symptoms, determine the distribution of these species, and test their pathogenicity and virulence on Persian lime plants. In 2015, symptomatic samples were collected from 12 commercial Persian lime orchards, and 60 Lasiodiplodia isolates were obtained. Fungal identification of 32 representative isolates was performed using a phylogenetic analysis based on DNA sequence data of the internal transcribed spacer region and part of the translation elongation factor 1-α and β-tubulin genes. Sequence analyses were carried out using the Maximum Likelihood and Bayesian Inference methods. Six Lasiodiplodia species were identified as Lasiodiplodia pseudotheobromae, Lasiodiplodia theobromae, Lasiodiplodia brasiliense, Lasiodiplodia subglobosa, Lasiodiplodia citricola, and Lasiodiplodia iraniensis. All Lasiodiplodia species of this study are reported for the first time in association with Persian lime in Mexico and worldwide. L. pseudotheobromae (46.9% of isolates) was the most frequently isolated species followed by L. theobromae (28.1%) and L. brasiliense (12.5%). Pathogenicity on Persian lime young plants using a mycelial plug inoculation method showed that all identified Lasiodiplodia species were able to cause necrotic lesions and gummosis, but L. subglobosa, L. iraniensis, and L. pseudotheobromae were the most virulent.


Sign in / Sign up

Export Citation Format

Share Document