The importin FgPse1 is required for vegetative development, virulence and DON production by interacting with the nuclear polyadenylated RNA-binding protein FgNab2 in Fusarium graminearum

2021 ◽  
Author(s):  
Lixin Zhang ◽  
Kewei Sun ◽  
Yiqing Li ◽  
Tianling Ma ◽  
YU ZHANG ◽  
...  

Karyopherins are involved in transport through nuclear pore complexes. Karyopherins are required for nuclear import and export pathways by binding to their cargos. Polyadenylation of mRNA is required for various biological processes by regulating gene expression in eukaryotes. Until now, the association of karyopherin with mRNA polyadenylation has been less understood in plant pathogenic fungi. In our study, we focused on the biological functions of the karyopherin FgPse1 in Fusarium graminearum. The results showed that FgPse1 is involved in mycelial growth, asexual reproduction, virulence and DON production. Co-IP and BiFC showed that FgPse1 interacts with the nuclear polyadenylated RNA-binding protein FgNab2. Moreover, a fluorescence localization assay indicated that FgPse1 is required for the nuclear import of FgNab2. The nuclear import of FgNab2 regulates the expression of FgTri4, FgTri5 and FgTri6, which are essential for DON production. Thus, ΔFgPse1 and ΔFgNab2 showed consistent defects in DON production. In summary, our data indicated that FgPse1 is required for mycelial growth, virulence and DON production by interacting with FgNab2 in F. graminearum. These results contribute to improving our understanding of the functions of importins in phytopathogenic fungi.

1993 ◽  
Vol 13 (10) ◽  
pp. 6102-6113
Author(s):  
J T Anderson ◽  
M R Paddy ◽  
M S Swanson

Proteins that directly associate with nuclear polyadenylated RNAs, or heterogeneous nuclear RNA-binding proteins (hnRNPs), and those that associate with cytoplasmic mRNAs, or mRNA-binding proteins (mRNPs), play important roles in regulating gene expression at the posttranscriptional level. Previous work with a variety of eukaryotic cells has demonstrated that hnRNPs are localized predominantly within the nucleus whereas mRNPs are cytoplasmic. While studying proteins associated with polyadenylated RNAs in Saccharomyces cerevisiae, we discovered an abundant polyuridylate-binding protein, PUB1, which appears to be both an hnRNP and an mRNP. PUB1 and PAB1, the polyadenylate tail-binding protein, are the two major proteins cross-linked by UV light to polyadenylated RNAs in vivo. The deduced primary structure of PUB1 indicates that it is a member of the ribonucleoprotein consensus sequence family of RNA-binding proteins and is structurally related to the human hnRNP M proteins. Even though the PUB1 protein is a major cellular polyadenylated RNA-binding protein, it is nonessential for cell growth. Indirect cellular immunofluorescence combined with digital image processing allowed a detailed comparison of the intracellular distributions of PUB1 and PAB1. While PAB1 is predominantly, and relatively uniformly, distributed within the cytoplasm, PUB1 is localized in a nonuniform pattern throughout both the nucleus and the cytoplasm. The cytoplasmic distribution of PUB1 is considerably more discontinuous than that of PAB1. Furthermore, sucrose gradient sedimentation analysis demonstrates that PAB1 cofractionates with polyribosomes whereas PUB1 does not. These results suggest that PUB1 is both an hnRNP and an mRNP and that it may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm.


2021 ◽  
Author(s):  
Tania Bishola Tshitenge ◽  
Bin Liu ◽  
Christine Clayton

The parasite Trypanosoma brucei grows as bloodstream forms in mammalian hosts, and as procyclic forms in tsetse flies. Trypanosome protein coding genes are arranged in polycistronic transcription units, so gene expression regulation depends heavily on post-transcriptional mechanisms. The essential RNA-binding protein RBP10 is expressed only in mammalian-infective forms, where it targets procyclic-specific mRNAs for destruction. We show that developmental regulation of RBP10 expression is mediated by the exceptionally long 7.3 Kb 3'-UTR of its mRNA. Different regulatory sequences that can independently enhance mRNA stability and translation in bloodstream forms, or destabilize and repress translation in procyclic forms, are scattered throughout the 3'-UTR. The RNA-binding protein DRBD18 is implicated in the export of a subset of mRNAs from the nucleus in procyclic forms. We confirmed that in bloodstream forms, DRBD18 copurifies the outer ring of the nuclear pore, mRNA export proteins and exon junction complex proteins. Loss of DRBD18 in bloodstream forms caused accumulation of several shortened RBP10 mRNA isoforms, with loss of longer species, but RNAi targeting the essential export factor MEX67 did not cause such changes, demonstrating specificity. Long RBP10 mRNAs accumulated in the nucleus, while shorter ones reached the cytoplasm. We suggest that DRBD18 binds to processing signals in the RBP10 3'-UTR, simultaneously preventing their use and recruiting mRNA export factors. DRBD18 depletion caused truncation of the 3'-UTRs of more than 100 other mRNAs, suggesting that it has an important role in regulating use of alternative processing sites.


2003 ◽  
Vol 53 (1/2) ◽  
pp. 201-212 ◽  
Author(s):  
Alicja Ziemienowicz ◽  
Dorothea Haasen ◽  
Dorothee Staiger ◽  
Thomas Merkle

1997 ◽  
Vol 139 (7) ◽  
pp. 1645-1653 ◽  
Author(s):  
Lucy F. Pemberton ◽  
Jonathan S. Rosenblum ◽  
Günter Blobel

Three independent pathways of nuclear import have so far been identified in yeast, each mediated by cognate nuclear transport factors, or karyopherins. Here we have characterized a new pathway to the nucleus, mediated by Mtr10p, a protein first identified in a screen for strains defective in polyadenylated RNA export. Mtr10p is shown to be responsible for the nuclear import of the shuttling mRNA-binding protein Npl3p. A complex of Mtr10p and Npl3p was detected in cytosol, and deletion of Mtr10p was shown to lead to the mislocalization of nuclear Npl3p to the cytoplasm, correlating with a block in import. Mtr10p bound peptide repeat-containing nucleoporins and Ran, suggesting that this import pathway involves a docking step at the nuclear pore complex and is Ran dependent. This pathway of Npl3p import is distinct and does not appear to overlap with another known import pathway for an mRNA-binding protein. Thus, at least two parallel pathways function in the import of mRNA-binding proteins, suggesting the need for the coordination of these pathways.


2016 ◽  
pp. jcs.192096 ◽  
Author(s):  
Wei Zhang ◽  
Amanda C. Vreeland ◽  
Noa Noy

2014 ◽  
Vol 15 (1) ◽  
pp. R26 ◽  
Author(s):  
Vicky Cho ◽  
Yan Mei ◽  
Arleen Sanny ◽  
Stephanie Chan ◽  
Anselm Enders ◽  
...  

2007 ◽  
Vol 409 (2) ◽  
pp. 389-398 ◽  
Author(s):  
Tongtong Zou ◽  
Lan Liu ◽  
Jaladanki N. Rao ◽  
Bernard S. Marasa ◽  
Jie Chen ◽  
...  

Polyamines are required for maintenance of intestinal epithelial integrity, and a decrease in cellular polyamines increases the cytoplasmic levels of RNA-binding protein HuR stabilizing p53 and nucleophosmin mRNAs, thus inhibiting IEC (intestinal epithelial cell) proliferation. The AMPK (AMP-activated protein kinase), an enzyme involved in responding to metabolic stress, was recently found to be implicated in regulating the nuclear import of HuR. Here, we provide evidence showing that polyamines modulate subcellular localization of HuR through AMPK-regulated phosphorylation and acetylation of Impα1 (importin α1) in IECs. Decreased levels of cellular polyamines as a result of inhibiting ODC (ornithine decarboxylase) with DFMO (D,L-α-difluoromethylornithine) repressed AMPK activity and reduced Impα1 levels, whereas increased levels of polyamines as a result of ODC overexpression induced both AMPK and Impα1 levels. AMPK activation by overexpression of the AMPK gene increased Impα1 but reduced the cytoplasmic levels of HuR in control and polyamine-deficient cells. IECs overexpressing wild-type Impα1 exhibited a decrease in cytoplasmic HuR abundance, while cells overexpressing Impα1 proteins bearing K22R (lacking acetylation site), S105A (lacking phosphorylation site) or K22R/S105A (lacking both sites) mutations displayed increased levels of cytoplasmic HuR. Ectopic expression of these Impα1 mutants also prevented the increased levels of cytoplasmic HuR following polyamine depletion. These results indicate that polyamine-mediated AMPK activation triggers HuR nuclear import through phosphorylation and acetylation of Impα1 in IECs and that polyamine depletion increases cytoplasmic levels of HuR as a result of inactivation of the AMPK-driven Impα1 pathway.


1993 ◽  
Vol 13 (10) ◽  
pp. 6102-6113 ◽  
Author(s):  
J T Anderson ◽  
M R Paddy ◽  
M S Swanson

Proteins that directly associate with nuclear polyadenylated RNAs, or heterogeneous nuclear RNA-binding proteins (hnRNPs), and those that associate with cytoplasmic mRNAs, or mRNA-binding proteins (mRNPs), play important roles in regulating gene expression at the posttranscriptional level. Previous work with a variety of eukaryotic cells has demonstrated that hnRNPs are localized predominantly within the nucleus whereas mRNPs are cytoplasmic. While studying proteins associated with polyadenylated RNAs in Saccharomyces cerevisiae, we discovered an abundant polyuridylate-binding protein, PUB1, which appears to be both an hnRNP and an mRNP. PUB1 and PAB1, the polyadenylate tail-binding protein, are the two major proteins cross-linked by UV light to polyadenylated RNAs in vivo. The deduced primary structure of PUB1 indicates that it is a member of the ribonucleoprotein consensus sequence family of RNA-binding proteins and is structurally related to the human hnRNP M proteins. Even though the PUB1 protein is a major cellular polyadenylated RNA-binding protein, it is nonessential for cell growth. Indirect cellular immunofluorescence combined with digital image processing allowed a detailed comparison of the intracellular distributions of PUB1 and PAB1. While PAB1 is predominantly, and relatively uniformly, distributed within the cytoplasm, PUB1 is localized in a nonuniform pattern throughout both the nucleus and the cytoplasm. The cytoplasmic distribution of PUB1 is considerably more discontinuous than that of PAB1. Furthermore, sucrose gradient sedimentation analysis demonstrates that PAB1 cofractionates with polyribosomes whereas PUB1 does not. These results suggest that PUB1 is both an hnRNP and an mRNP and that it may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm.


2007 ◽  
Vol 177 (4S) ◽  
pp. 78-79
Author(s):  
Lioudmila Sitnikova ◽  
Gary Mendese ◽  
Qin Lui ◽  
Bruce A. Woda ◽  
Di Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document