PUB1 is a major nuclear and cytoplasmic polyadenylated RNA-binding protein in Saccharomyces cerevisiae

1993 ◽  
Vol 13 (10) ◽  
pp. 6102-6113
Author(s):  
J T Anderson ◽  
M R Paddy ◽  
M S Swanson

Proteins that directly associate with nuclear polyadenylated RNAs, or heterogeneous nuclear RNA-binding proteins (hnRNPs), and those that associate with cytoplasmic mRNAs, or mRNA-binding proteins (mRNPs), play important roles in regulating gene expression at the posttranscriptional level. Previous work with a variety of eukaryotic cells has demonstrated that hnRNPs are localized predominantly within the nucleus whereas mRNPs are cytoplasmic. While studying proteins associated with polyadenylated RNAs in Saccharomyces cerevisiae, we discovered an abundant polyuridylate-binding protein, PUB1, which appears to be both an hnRNP and an mRNP. PUB1 and PAB1, the polyadenylate tail-binding protein, are the two major proteins cross-linked by UV light to polyadenylated RNAs in vivo. The deduced primary structure of PUB1 indicates that it is a member of the ribonucleoprotein consensus sequence family of RNA-binding proteins and is structurally related to the human hnRNP M proteins. Even though the PUB1 protein is a major cellular polyadenylated RNA-binding protein, it is nonessential for cell growth. Indirect cellular immunofluorescence combined with digital image processing allowed a detailed comparison of the intracellular distributions of PUB1 and PAB1. While PAB1 is predominantly, and relatively uniformly, distributed within the cytoplasm, PUB1 is localized in a nonuniform pattern throughout both the nucleus and the cytoplasm. The cytoplasmic distribution of PUB1 is considerably more discontinuous than that of PAB1. Furthermore, sucrose gradient sedimentation analysis demonstrates that PAB1 cofractionates with polyribosomes whereas PUB1 does not. These results suggest that PUB1 is both an hnRNP and an mRNP and that it may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm.

1993 ◽  
Vol 13 (10) ◽  
pp. 6102-6113 ◽  
Author(s):  
J T Anderson ◽  
M R Paddy ◽  
M S Swanson

Proteins that directly associate with nuclear polyadenylated RNAs, or heterogeneous nuclear RNA-binding proteins (hnRNPs), and those that associate with cytoplasmic mRNAs, or mRNA-binding proteins (mRNPs), play important roles in regulating gene expression at the posttranscriptional level. Previous work with a variety of eukaryotic cells has demonstrated that hnRNPs are localized predominantly within the nucleus whereas mRNPs are cytoplasmic. While studying proteins associated with polyadenylated RNAs in Saccharomyces cerevisiae, we discovered an abundant polyuridylate-binding protein, PUB1, which appears to be both an hnRNP and an mRNP. PUB1 and PAB1, the polyadenylate tail-binding protein, are the two major proteins cross-linked by UV light to polyadenylated RNAs in vivo. The deduced primary structure of PUB1 indicates that it is a member of the ribonucleoprotein consensus sequence family of RNA-binding proteins and is structurally related to the human hnRNP M proteins. Even though the PUB1 protein is a major cellular polyadenylated RNA-binding protein, it is nonessential for cell growth. Indirect cellular immunofluorescence combined with digital image processing allowed a detailed comparison of the intracellular distributions of PUB1 and PAB1. While PAB1 is predominantly, and relatively uniformly, distributed within the cytoplasm, PUB1 is localized in a nonuniform pattern throughout both the nucleus and the cytoplasm. The cytoplasmic distribution of PUB1 is considerably more discontinuous than that of PAB1. Furthermore, sucrose gradient sedimentation analysis demonstrates that PAB1 cofractionates with polyribosomes whereas PUB1 does not. These results suggest that PUB1 is both an hnRNP and an mRNP and that it may be stably bound to a translationally inactive subpopulation of mRNAs within the cytoplasm.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 552
Author(s):  
Jasmine Harley ◽  
Benjamin E. Clarke ◽  
Rickie Patani

RNA binding proteins fulfil a wide number of roles in gene expression. Multiple mechanisms of RNA binding protein dysregulation have been implicated in the pathomechanisms of several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Oxidative stress and mitochondrial dysfunction also play important roles in these diseases. In this review, we highlight the mechanistic interplay between RNA binding protein dysregulation, oxidative stress and mitochondrial dysfunction in ALS. We also discuss different potential therapeutic strategies targeting these pathways.


1993 ◽  
Vol 13 (10) ◽  
pp. 6114-6123
Author(s):  
M J Matunis ◽  
E L Matunis ◽  
G Dreyfuss

The expression of RNA polymerase II transcripts can be regulated at the posttranscriptional level by RNA-binding proteins. Although extensively characterized in metazoans, relatively few RNA-binding proteins have been characterized in the yeast Saccharomyces cerevisiae. Three major proteins are cross-linked by UV light to poly(A)+ RNA in living S. cerevisiae cells. These are the 72-kDa poly(A)-binding protein and proteins of 60 and 50 kDa (S.A. Adam, T.Y. Nakagawa, M.S. Swanson, T. Woodruff, and G. Dreyfuss, Mol. Cell. Biol. 6:2932-2943, 1986). Here, we describe the 60-kDa protein, one of the major poly(A)+ RNA-binding proteins in S. cerevisiae. This protein, PUB1 [for poly(U)-binding protein 1], was purified by affinity chromatography on immobilized poly(rU), and specific monoclonal antibodies to it were produced. UV cross-linking demonstrated that PUB1 is bound to poly(A)+ RNA (mRNA or pre-mRNA) in living cells, and it was detected primarily in the cytoplasm by indirect immunofluorescence. The gene for PUB1 was cloned and sequenced, and the sequence was found to predict a 51-kDa protein with three ribonucleoprotein consensus RNA-binding domains and three glutamine- and asparagine-rich auxiliary domains. This overall structure is remarkably similar to the structures of the Drosophila melanogaster elav gene product, the human neuronal antigen HuD, and the cytolytic lymphocyte protein TIA-1. Each of these proteins has an important role in development and differentiation, potentially by affecting RNA processing. PUB1 was found to be nonessential in S. cerevisiae by gene replacement; however, further genetic analysis should reveal important features of this class of RNA-binding proteins.


2020 ◽  
Vol 295 (42) ◽  
pp. 14291-14304
Author(s):  
Kathrin Bajak ◽  
Kevin Leiss ◽  
Christine Clayton ◽  
Esteban Erben

In Trypanosoma brucei and related kinetoplastids, gene expression regulation occurs mostly posttranscriptionally. Consequently, RNA-binding proteins play a critical role in the regulation of mRNA and protein abundance. Yet, the roles of many RNA-binding proteins are not understood. Our previous research identified the RNA-binding protein ZC3H5 as possibly involved in gene repression, but its role in controlling gene expression was unknown. We here show that ZC3H5 is an essential cytoplasmic RNA-binding protein. RNAi targeting ZC3H5 causes accumulation of precytokinetic cells followed by rapid cell death. Affinity purification and pairwise yeast two-hybrid analysis suggest that ZC3H5 forms a complex with three other proteins, encoded by genes Tb927.11.4900, Tb927.8.1500, and Tb927.7.3040. RNA immunoprecipitation revealed that ZC3H5 is preferentially associated with poorly translated, low-stability mRNAs, the 5′-untranslated regions and coding regions of which are enriched in the motif (U/A)UAG(U/A). As previously found in high-throughput analyses, artificial tethering of ZC3H5 to a reporter mRNA or other complex components repressed reporter expression. However, depletion of ZC3H5 in vivo caused only very minor decreases in a few targets, marked increases in the abundances of very stable mRNAs, an increase in monosomes at the expense of large polysomes, and appearance of “halfmer” disomes containing two 80S subunits and one 40S subunit. We speculate that the ZC3H5 complex might be implicated in quality control during the translation of suboptimal open reading frames.


2016 ◽  
Vol 12 (2) ◽  
pp. 532-540 ◽  
Author(s):  
Pritha Ghosh ◽  
R. Sowdhamini

We have classified the existing RNA-binding protein (RBP) structures into different structural families. Here, we report ∼2600 proteins with RBP signatures in humans.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Barbara Celona ◽  
John von Dollen ◽  
Sarat C Vatsavayai ◽  
Risa Kashima ◽  
Jeffrey R Johnson ◽  
...  

Expanded GGGGCC repeats in the first intron of the C9orf72 gene represent the most common cause of familial amyotrophic lateral sclerosis (ALS), but the mechanisms underlying repeat-induced disease remain incompletely resolved. One proposed gain-of-function mechanism is that repeat-containing RNA forms aggregates that sequester RNA binding proteins, leading to altered RNA metabolism in motor neurons. Here, we identify the zinc finger protein Zfp106 as a specific GGGGCC RNA repeat-binding protein, and using affinity purification-mass spectrometry, we show that Zfp106 interacts with multiple other RNA binding proteins, including the ALS-associated factors TDP-43 and FUS. We also show that Zfp106 knockout mice develop severe motor neuron degeneration, which can be suppressed by transgenic restoration of Zfp106 specifically in motor neurons. Finally, we show that Zfp106 potently suppresses neurotoxicity in a Drosophila model of C9orf72 ALS. Thus, these studies identify Zfp106 as an RNA binding protein with important implications for ALS.


2018 ◽  
Author(s):  
Tim Schneider ◽  
Lee-Hsueh Hung ◽  
Masood Aziz ◽  
Anna Wilmen ◽  
Stephanie Thaum ◽  
...  

AbstractHow multidomain RNA-binding proteins recognize their specific target sequences, based on a combinatorial code, represents a fundamental unsolved question and has not been studied systematically so far. Here we focus on a prototypical multidomain RNA-binding protein, IMP3 (also called IGF2BP3), which contains six RNA-binding domains (RBDs): four KH and two RRM domains. We have established an integrative systematic strategy, combining single-domain-resolved SELEX-seq, motif-spacing analyses, in vivo iCLIP, functional validation assays, and structural biology. This approach identifies the RNA-binding specificity and RNP topology of IMP3, involving all six RBDs and a cluster of up to five distinct and appropriately spaced CA-rich and GGC-core RNA elements, covering a >100 nucleotide-long target RNA region. Our generally applicable approach explains both specificity and flexibility of IMP3-RNA recognition, providing a paradigm for the function of multivalent interactions with multidomain RNA-binding proteins in gene regulation.


2020 ◽  
Vol 56 (9) ◽  
pp. 1365-1368 ◽  
Author(s):  
Kouki Shinoda ◽  
Akiyo Suda ◽  
Kenko Otonari ◽  
Shiroh Futaki ◽  
Miki Imanishi

A new method manipulating local RNA methylation was developed by fusing the programmable RNA binding protein and the m6A demethylase or methyltransferase.


1994 ◽  
Vol 127 (5) ◽  
pp. 1173-1184 ◽  
Author(s):  
S M Wilson ◽  
K V Datar ◽  
M R Paddy ◽  
J R Swedlow ◽  
M S Swanson

To study the functions of heterogeneous nuclear ribonucleoproteins (hnRNPs), we have characterized nuclear polyadenylated RNA-binding (Nab) proteins from Saccharomyces cerevisiae. Nab1p, Nab2p, and Nab3p were isolated by a method which uses UV light to cross-link proteins directly bound to poly(A)+ RNA in vivo. We have previously characterized Nab2p, and demonstrated that it is structurally related to human hnRNPs. Here we report that Nab1p is identical to the Np13p/Nop3p protein recently implicated in both nucleocytoplasmic protein shuttling and pre-rRNA processing, and characterize a new nuclear polyadenylated RNA-binding protein, Nab3p. The intranuclear distributions of the Nab proteins were analyzed by three-dimensional immunofluorescence optical microscopy. All three Nab proteins are predominantly localized within the nucleoplasm in a pattern similar to the distribution of hnRNPs in human cells. The NAB3 gene is essential for cell viability and encodes an acidic ribonucleoprotein. Loss of Nab3p by growth of a GAL::nab3 mutant strain in glucose results in a decrease in the amount of mature ACT1, CYH2, and TPI1 mRNAs, a concomitant accumulation of unspliced ACT1 pre-mRNA, and an increase in the ratio of unspliced CYH2 pre-mRNA to mRNA. These results suggest that the Nab proteins may be required for packaging pre-mRNAs into ribonucleoprotein structures amenable to efficient nuclear RNA processing.


Blood ◽  
2011 ◽  
Vol 118 (22) ◽  
pp. 5732-5740 ◽  
Author(s):  
Maria Baou ◽  
John D. Norton ◽  
John J. Murphy

Abstract Posttranscriptional mechanisms are now widely acknowledged to play a central role in orchestrating gene-regulatory networks in hematopoietic cell growth, differentiation, and tumorigenesis. Although much attention has focused on microRNAs as regulators of mRNA stability/translation, recent data have highlighted the role of several diverse classes of AU-rich RNA-binding protein in the regulation of mRNA decay/stabilization. AU-rich elements are found in the 3′-untranslated region of many mRNAs that encode regulators of cell growth and survival, such as cytokines and onco/tumor-suppressor proteins. These are targeted by a burgeoning number of different RNA-binding proteins. Three distinct types of AU-rich RNA binding protein (ARE poly-U–binding degradation factor-1/AUF1, Hu antigen/HuR/HuA/ELAVL1, and the tristetraprolin/ZFP36 family of proteins) are essential for normal hematopoiesis. Together with 2 further AU-rich RNA-binding proteins, nucleolin and KHSRP/KSRP, the functions of these proteins are intimately associated with pathways that are dysregulated in various hematopoietic malignancies. Significantly, all of these AU-rich RNA-binding proteins function via an interconnected network that is integrated with microRNA functions. Studies of these diverse types of RNA binding protein are providing novel insight into gene-regulatory mechanisms in hematopoiesis in addition to offering new opportunities for developing mechanism-based targeted therapeutics in leukemia and lymphoma.


Sign in / Sign up

Export Citation Format

Share Document