scholarly journals Cytological Aspects of Compost-Mediated Induced Resistance Against Fusarium Crown and Root Rot in Tomato

2002 ◽  
Vol 92 (4) ◽  
pp. 424-438 ◽  
Author(s):  
Benoît Pharand ◽  
Odile Carisse ◽  
Nicole Benhamou

The potential of a pulp and paper mill residues compost for the control of crown and root rot of greenhouse-grown tomato caused by Fusarium oxysporum f. sp. radicis-lycopersici was ultrastructurally investigated. Peat moss amended with compost substantially reduced disease-associated symptoms. Addition of Pythium oligandrum to either peat moss alone or peat moss amended with compost resulted in a considerable reduction in disease incidence compared with controls grown in peat moss alone. Histological and cytological observations of root samples from Fusarium-inoculated plants revealed that the beneficial effect of compost in reducing disease symptoms is associated with increased plant resistance to fungal colonization. One of the most prominent facets of compost-mediated induced resistance concerned the formation of physical barriers at sites of attempted fungal penetration. These structures, likely laid down to prevent pathogen ingress toward the vascular elements, included callose-enriched wall appositions and osmiophilic deposits around the sites of potential pathogen ingress. Invading hyphae, coated by the osmiophilic material, showed marked cellular disorganization. The use of the wheat germ agglutinin-ovomucoid-gold complex provided evidence that the wall-bound chitin was altered in severely damaged hyphae. A substantial increase in the extent and magnitude of the cellular changes induced by compost was observed when P. oligandrum was supplied to the potting substrate. This finding corroborates the current concept that amendment of composts with specific antagonists may be a valuable option for amplifying their beneficial properties in terms of plant disease suppression.

Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1116-1123 ◽  
Author(s):  
Eyal Klein ◽  
Jaacov Katan ◽  
Abraham Gamliel

Soil suppressiveness to soilborne pathogens can evolve following the incorporation of plant residues in the soil and solarization. We studied its occurrence by assessing disease incidence and severity in sandy soil which was infested after the disinfestation treatment. Disease incidence and severity of crown and root rot in cucumber plants inoculated with Fusarium oxysporum f. sp. radicis-cucumerinum macroconidia were reduced by 20 to 80% when seedlings were planted in the tested soils 2 to 34 months after soil amendment. Residues of Diplotaxis tenuifolia (wild rocket [WR]), Artemisia dracunculus (tarragon), Salvia officinalis (sage), and Brassica oleracea var. italica (broccoli) were most effective for inducing soil suppressiveness. Effective soil suppressiveness continued to be evident after repeated inoculations and plantings in the same soil without additional treatment between inoculations. Moreover, residues of WR induced soil suppressiveness in two additional tested soils differing in their physical and chemical properties. Residues of Rosmarinus officinalis (rosemary), Coriandrum sativum (coriander), Mentha piperita (peppermint), and B. oleraceae var. botrytis (cauliflower) induced disease suppression at the first inoculated planting but not upon repeated inoculation and planting. The contribution of soil solarization to the evolution of soil suppressiveness, albeit evident, was inconsistent. Soil suppressiveness to Fusarium crown and root rot was also observed when cucumber seed were sown in soils which were initially amended with WR residues and later infested with F. oxysporum f. sp. radicis-cucumerinum chlamydospores. There is a potential for the use of plant residues for inducing soil suppressiveness and further contributing to the control of diseases caused by soilborne pathogens.


Plant Disease ◽  
2008 ◽  
Vol 92 (9) ◽  
pp. 1368-1368 ◽  
Author(s):  
S. T. Koike

In 2005 and 2006, field-grown iceberg lettuce (Lactuca sativa) in California's coastal Salinas Valley (Monterey County) was affected by a previously unreported disease. Symptoms were observed on iceberg lettuce at the post-thin rosette stage (8 to 12 leaves). Plants were stunted and slightly chlorotic. Fine feeder roots had numerous, small (4 to 8 mm long), elongated, dark brown-to-black lesions. Larger secondary roots and taproots lacked lesions. No vascular discoloration was present. Isolations from root lesions consistently resulted in gray fungal colonies that formed catenulate, cylindrical, thin-walled, hyaline endoconidia and catenulate, subrectangular, thick-walled, dark aleuriospores. The fungus was identified as Thielaviopsis basicola (2). Conidial suspensions (5.0 × 105) of eight isolates from iceberg lettuce were used for pathogenicity tests. Iceberg cv. Ponderosa and romaine cv. Winchester were grown for 3 weeks in soilless peat moss rooting mix. Roots of 20 plants per cultivar were washed free of the rooting mix and soaked in conidial suspensions for 5 min. Plants were repotted and grown in a greenhouse. Control plant roots were soaked in sterile distilled water (SDW). After 3 weeks, inoculated iceberg exhibited slight chlorosis in comparison with control plants. Feeder roots of all iceberg plants inoculated with the eight isolates exhibited numerous black lesions and T. basicola was reisolated from these roots. Romaine lettuce, however, did not show any foliar symptoms. Small segments of roots had tan-to-light brown discoloration and T. basicola was occasionally reisolated (approximately 40% recovery). Roots of control iceberg and romaine showed no symptoms. Results were similar when this experiment was repeated. To explore the host range of T. basicola recovered from lettuce, two isolates were prepared and inoculated as described above onto 12 plants each of the following: iceberg lettuce (cv. Ponderosa), bean (cv. Blue Lake), broccoli (cv. Patriot), carrot (cv. Long Imperator #58), celery (cv. Conquistador), cotton (cv. Phy-72 Acala), cucumber (cv. Marketmore 76), green bunching onion (cv. Evergreen Bunching), parsley (cv. Moss Curled), pepper (cv. California Wonder 300 TMR), radish (cv. Champion), spinach (cvs. Bolero and Bossanova), and tomato (cv. Beefsteak). Control plant roots of all cultivars were soaked in SDW. After 4 weeks, only lettuce and bean roots had extensive brown-to-black lesions, from which the pathogen was consistently resiolated. Roots of cotton, pepper, spinach, and tomato had sections of light brown-to-orange discoloration; the pathogen was not consistently recovered from these sections. All other species and the control plants were symptomless. This experiment was repeated with similar results except that inoculated peppers were distinctly stunted compared with control plants. To my knowledge, this is the first report of black root rot caused by T. basicola on lettuce in California. Disease was limited to patches along edges of iceberg lettuce fields; disease incidence in these discrete patches reached as high as 35%. Affected plants continued to grow but remained stunted in relation to unaffected plants and were not harvested. Black root rot of lettuce has been reported in Australia (1); that report also showed that lettuce cultivars vary in susceptibility to T. basicola and isolates from lettuce were highly aggressive on bean but not on many other reported hosts of this pathogen. References: (1) R. G. O'Brien and R. D. Davis. Australas. Plant Pathol. 23:106, 1994. (2) C. V. Subramanian. No. 170 in: Descriptions of Pathogenic Fungi and Bacteria. CMI, Kew, Surrey, UK, 1968.


2003 ◽  
Vol 93 (2) ◽  
pp. 186-192 ◽  
Author(s):  
Wade H. Elmer

The role of NaCl in suppression of Fusarium crown and root rot of asparagus was investigated in split root culture so the direct effects of NaCl on the root and rhizosphere could be separated from effects that were translocated to the nontreated root side. One side of the root system was exposed to 100 ml of 0, 0.5, or 1.0% NaCl, while the other side received deionized water. Both sides of the root system were inoculated with conidial suspensions of the pathogens Fusarium oxysporum and F. proliferatum. When plants were harvested and assayed, root lesions and CFUs of F. oxysporum or F. proliferatum per centimeter of root from both exposed and nonexposed roots decreased as the NaCl rate increased to 1.0%, but the reduction relative to the control was significantly greater on roots that were directly exposed to NaCl (51% reduction in root lesions) than on adjacent nonexposed roots (31% reduction in root lesions). On both sides of the root systems, disease suppression with NaCl was associated with increases in the rhizosphere densities of fluorescent pseudomonads and Mn-reducing bacteria in the rhizosphere soil. In addition, as the NaCl rate increased, root tissues had marked reductions in malic acid and amino acids while concentrations of Cl and Mn increased in equal proportions on both sides of the root system. Chloride ions were absorbed in greater amounts than Na ions, and were more mobile in the plant than Na. Plants treated with 1% NaCl (171 meq of Cl- per liter) had soil leachates 1 week later of 47 meq of Cl- per liter from pots exposed to NaCl, but in the adjacent nonexposed pots, the amount of Cl in the leachates slowly increased over the course of the study to 20 meq/liter, presumably through the root exudation. These findings suggest that suppression of Fusarium crown and root rot of asparagus with NaCl may be due to multiple mechanisms. Maximum suppression occurs when NaCl is directly applied to roots, but suppression still occurs on distal non-treated roots resulting from systemic mechanisms. The latter mechanism may be associated with a root-mediated alteration in the rhizobacteria.


Plant Disease ◽  
2011 ◽  
Vol 95 (9) ◽  
pp. 1194-1194 ◽  
Author(s):  
G. Polizzi ◽  
D. Aiello ◽  
V. Guarnaccia ◽  
A. Panebianco ◽  
P. T. Formica

The genus Passiflora (Passifloraceae family) contains more than 500 species and several hybrids. In Italy, some of these species and hybrids are grown as ornamental evergreen vines or shrubs. During August and September 2010, a crown and root rot was observed in a stock of approximately 6,000 potted 2-year-old plants of Passiflora mollissima (Kunth) Bailey, commonly known as the banana passionflower, in a nursery located in eastern Sicily (southern Italy). Disease incidence was approximately 20%. Disease symptoms consisted of water-soaked lesions at the crown and a root rot. Successively, older crown lesions turned light brown to brown and expanded to girdle the stem. As crown and root rot progressed, basal leaves turned yellow and gradually became necrotic and infected plants wilted and died. A fungus with mycelial and morphological characteristics of Rhizoctonia solani Kühn was consistently isolated from crown lesions and brown decaying roots when plated on potato dextrose agar (PDA) amended with streptomycin sulfate at 100 μg/ml. Fungal colonies were initially white, turned brown with age, and produced irregularly shaped, brown sclerotia. Mycelium was branched at right angles with a septum near the branch with a slight constriction at the branch base. Hyphal cells removed from 10 representative cultures grown at 25°C on 2% water agar were determined to be multinucleate when stained with 1% safranin O and 3% KOH solution (1) and examined at ×400. Anastomosis groups were determined by pairing isolates on 2% water agar in petri plates (4). Pairings were made with tester strains of AG-1, AG-2, AG-3, AG-4, AG-5, AG-6, and AG-11. Anastomosis was observed only with tester isolates of AG-4 (3). Pathogenicity tests were performed on container-grown, healthy, 3-month-old cuttings. Twenty plants of P. mollissima were inoculated near the base of the stem with five 1-cm2 PDA plugs from 5-day-old mycelial plugs obtained from two representative cultures. The same number of plants served as uninoculated controls. Plants were maintained at 25°C and 95% relative humidity with a 12-h fluorescent light/dark regimen. Wilt symptoms due to crown and root rot, identical to ones observed in the nursery, appeared 7 to 8 days after inoculation with either of the two isolates and all plants died within 20 days. No disease was observed on control plants. R. solani AG-4 was reisolated from symptomatic tissues and identified as previously described, confirming its pathogenicity. Damping-off or crown and root rot due to R. solani were previously detected on P. edulis in Brazil, Africa, India, Oceania, and Australia (2). To our knowledge, this is the first report of R. solani causing crown and root rot on P. mollissima. References: (1) R. J. Bandoni. Mycologia 71:873, 1979. (2) J. L. Bezerra and M. L. Oliveira. Fitopathol. Brasil. 9:273, 1984. (3) D. E. Carling. Page 37 in: Grouping in Rhizoctonia solani by Hyphal Anastomosis Reactions. Kluwer Academic Publishers, the Netherlands, 1996. (4) C. C. Tu and J. W. Kimbrough. Mycologia 65:941, 1973.


Plant Disease ◽  
2004 ◽  
Vol 88 (1) ◽  
pp. 86-86
Author(s):  
E. R. Wright ◽  
M. C. Rivera ◽  
K. Asciutto ◽  
L. Gasoni ◽  
V. Barrera ◽  
...  

Common garden petunias (Petunia × hybrida Hort. Vilm.-Andr.) are herbaceous annual plants with brightly colored flowers up to 10 cm in diameter. During the winter of 2002, crown and root rot were observed on plants (cv. Ultra) growing in five greenhouses in Buenos Aires. Affected plants were randomly distributed in the greenhouses, and mean disease incidence in all the greenhouses was 26%. Basal leaves turned yellow and gradually became necrotic, and infected plants were often killed. Small pieces of affected tissues were disinfested in 2% sodium hypochlorite for 1 min and plated on 2% potato dextrose agar (PDA). Fifteen isolates identified to the genus Rhizoctonia were obtained. Fungal colonies were initially white, turned brown with age, and produced irregularly shaped, brown sclerotia. Hyphal branched at right angles, were constricted at the base of the branch near the union with main hyphae, and septate near the constriction. Basidia were not observed in the greenhouses or on the plates. Isolates were cultivated on water agar and incubated at 25°C for 3 days. Hyphal cells were determined to be multinucleate when stained with 1% aniline blue solution (2) and examined at ×400. Anastomosis group of one isolate was determined by using AG-4 HG II, AG-1 IA, AG-1 IB, AG-1 IC, AG-2 2-1, and AG-2 2IIIB tester strains of Rhizoctonia solani that includes isolates reported to be pathogenic on ornamentals (1). Anastomosis was observed only with strains of AG-4 HG II. Pathogenicity on this isolate was conducted on potted, healthy, adult plants that were 10 to 22 cm high and flowering. Thirty-five plants were inoculated by placing 1 cm2 pieces of PDA from 7-day-old mycelial cultures near the base of the stem. Twelve control plants were treated with 1 cm2 PDA plugs. Plants were kept at 22 to 24°C, >95% relative humidity, and 12 h of fluorescent light. Wilt symptoms due to basal stem rot appeared 7 days after inoculation, and all the inoculated plants died within 27 days. Control plants remained disease free. The pathogen was reisolated from symptomatic tissues, completing Koch's postulates. To our knowledge, this is the first report of R. solani causing disease on petunia in Argentina. References: (1) D. M. Benson and D. K. Cartwright. Ornamental diseases incited by Rhizoctonia spp. Pages 303–314 in: Rhizoctonia species: Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control. B. Sneh et al., eds. Kluwer Academic Publishers, London, England, 1996. (2) C. C. Tu and J. W. Kimbrough. Mycologia 65:941, 1973.


2005 ◽  
Vol 95 (12) ◽  
pp. 1438-1444 ◽  
Author(s):  
Shachaf Triky-Dotan ◽  
Uri Yermiyahu ◽  
Jaacov Katan ◽  
Abraham Gamliel

We studied the effect of water salinity on the incidence and severity of crown and root rot disease of tomato, as well as on the pathogen and on the plant's response to the pathogen. Irrigation with saline water significantly increased disease severity in tomato transplants inoculated with Fusarium oxysporum f. sp. radicis-lycopersici, and mineral fertilization further increased it. In one field experiment, disease incidence in plots irrigated with saline water (electrical conductivity [EC] = 3.2 ± 0.1 dS m-1) and in those irrigated with fresh water (EC = 0.4 ± 0.1 dS m-1) was 75 and 38%, respectively. Disease onset was earlier and yield was lower in plots irrigated with saline water. In a second field experiment, final disease incidence 250 days after planting, was 12% in plants which had been irrigated with saline water (EC = 4.6 ± 0.1 dS m-1) and 4% in those irrigated with fresh water (EC = 1.2 ± 0.1 dS m-1). Irrigation of tomato transplants with 20 mM NaCl did not inhibit plant development, but partial inhibition was observed at higher NaCl concentrations. Growth of the pathogen in culture or survival of conidia added to soil were not affected by saline water. Plants which were preirrigated with saline water were more severely diseased than those preirrigated with tap water. It was concluded that disease increases effected by saline water are associated with the latter's effect on plant response.


Plant Disease ◽  
1998 ◽  
Vol 82 (9) ◽  
pp. 1039-1042 ◽  
Author(s):  
R. M. Harveson ◽  
C. M. Rush

Fusarium root rot, caused by Fusarium oxysporum f. sp. betae is one of several root diseases damaging to sugar beet production in Texas. As a primary symptom, most isolates produce a severe tip rot on the distal end of the taproot, in addition to discoloration of vascular elements and wilting. Tip rot distinguishes Fusarium root rot from another F. oxysporum f. sp. betae-incited disease, Fusarium yellows, which induces vascular discoloration and wilting but no root rot. This study was conducted to further characterize a selection of five Texas F. oxysporum f. sp. betae isolates representing different vegetative compatibility groupings, symptom types (tip rot, and non-tip rot), and hosts. Radial growth at six temperatures was measured for each isolate in culture on half-strength potato dextrose agar. Significant growth differences were detected, indicating a substantial amount of variation among the isolates. Virulence of isolates was evaluated by inoculating 6-week-old sugar beet plants with a microspore suspension and transplanting them into infested field soil. The plants were incubated at 20 and 30°C in controlled temperature boxes within the greenhouse and grown under two different irrigation schedules. After 6 weeks, plants were harvested and assigned a root disease rating, and root and foliar dry weights were determined. Disease ratings among isolates at 30°C resulted in three isolates (all tip rot isolates) being severe, one mild, and one intermediate. At 20°C, only one isolate caused appreciable root damage. Irrigation treatments had no effect on disease incidence or severity. Significant differences in colony diameter growth and virulence among isolates at the two temperatures provide further evidence of variation among Texas F. oxysporum f. sp. betae populations. Results also suggest that the tip rot phenotype may be induced by some genetic factor unique to tip rot isolates. Therefore, the form name F. oxysporum f. sp. radicis-betae is proposed for those isolates from Texas causing a tip rot.


Plant Disease ◽  
2022 ◽  
Author(s):  
Jiahuai Hu ◽  
Austin Rueda

Guayule (Parthenium argentatum A. Gray) is a perennial shrub plant (approximately 50 cm in height) cultivated in the southwestern United States. It produces natural low-allergenic latex, resins and high-energy biofuel feedstock. During August 2021, a crown and root rot disease was observed on 2-year-old plants of direct-seeded guayule cultivar ‘Az 2’ in research plots located in Pinal county, Arizona, where a record 36 cm of rainfall fell during monsoon season. Symptoms included yellowing of leaves, wilting, and plant death. Average disease incidence was 16%. Isolation from necrotic crown and root tissues on 10% clarified V8-PARP (Jeffers and Martin 1986) yielded Phytophthora-like colonies. Three isolates were subcultured on V8 agar and chlamydospores and hyphal swellings were abundant in 2-week-old cultures. All three isolates produced abundant noncaducous and nonpapillate sporangia ranging from 33 to 54 μm × 20 to 39 μm (average 45.5 × 28.5 μm, n = 20) in soil water extract solution. Isolates did not produce oospores after 2 weeks on carrot agar at 20°C in the dark. Isolates had optimum vegetative growth at 30 oC and grew well at 35 oC. There was no growth at 5 and 40 oC. Genomic DNA was extracted from the mycelia of three isolates using DNeasy Plant Pro Kit (Qiagen Inc., Valencia, CA) according to the manufacturer’s instructions. The internal transcribed spacer (ITS) region of rDNA, mitochondrially encoded cytochrome c oxidase 1 (cox 1) gene, and beta-tubulin (β-tub) gene were amplified with primers ITS1/ITS4 (White et al., 1990), COXF4N/COXR4N and TUBUF2/TUBUR1 (Kroon et al., 2004) and the resulting 3 amplicons were sequenced (GenBank Accession No. OK438221, OK484426, and OK484427). A BLASTn search of 811-bp amplicon (OK438221) revealed 99% match (762/766) with ITS sequences MG865562 which was Phytophthora parsiana Ex-type CPHST BL 47 from Iran. BLAST analysis of the 867-bp amplicon (OK484427) showed 99% identity (866/867) with the COX 1 sequence of P. parsiana (KC733455) from Virginia. BLAST analysis of the 941-bp amplicon (OK484426) showed 99% identity (928/938) with the β-tub sequence of P. parsiana (AY659746). To fulfill Koch’s postulates, pathogenicity tests were conducted twice on 2-week-old ‘Az 2’ guayule seedlings grown in 10 plants per 1.9-liter pot filled with a steam-disinfested potting mix. Pots were placed in a plastic container and watered three times a week by flooding, to create waterlogged conditions. Plants were maintained in a greenhouse with 12 h day/12 h night (15-28 oC) and fertilized weekly with a 20-20-20 fertilizer at 1mg/ml. Fifty plants in 5 pots were challenged with a P. parsiana isolate by drenching each pot with 50 ml of a 1×105 zoospore/ml suspension. Fifty plants in 5 pots, serving as a control, received each 50 ml of distilled water. Symptoms of wilting, root rot, and plant death were observed 1 week afterward in inoculated plants, whereas control plants remained asymptomatic. P. parsiana was reisolated from necrotic roots of inoculated plants but not from control plants. To our knowledge, this is the first report of crown and root rot in guayule caused by P. parsiana in Arizona. P. parsiana is a species known for causing root rot on woody plants such as pistachio in California (Fichtner et al., 2016) and Iran (Mostowfizadeh-Ghalamfarsa et al., 2008). Arizona is home of desert woody guayule plant. P. parsiana may represent a significant barrier to commercialization of guayule for rubber in low desert areas of Arizona. The origin, distribution, and virulence of the pathogen on Arizona guayule is currently unknown. Disease resistance evaluation may help identify resistance in guayule germplasm that are useful in breeding for resistant cultivars.


Plant Disease ◽  
2009 ◽  
Vol 93 (9) ◽  
pp. 972-972 ◽  
Author(s):  
G. Polizzi ◽  
D. Aiello ◽  
I. Castello ◽  
A. Vitale

Coprosma (J.R. Forster & G. Forster), a genus containing approximately 90 species, occurs principally in New Zealand, Hawaii, Australia, New Guinea, and islands of the Pacific. In Italy, some of these species, including many variegated varieties and hybrids, are grown as ornamental evergreen shrubs or small trees. In June 2008, a crown and root rot was observed in a stock of approximately 12,000 potted 3-year-old plants of Coprosma repens cv. Yvonne and C. lucida in a nursery in eastern Sicily. Disease incidence was approximately 30%. Disease symptoms consisted of water-soaked lesions at the crown of the trunk and a root rot. Successively, older stem lesions turned orange to brown. As a consequence, leaves initially became chlorotic, gradually became necrotic, and death of the plant followed. A fungus with mycelial and morphological characteristics of Rhizoctonia solani Kühn was consistently isolated from crown and root lesions when plated on potato dextrose agar (PDA) amended with streptomycin sulfate at 100 μg/ml. Fungal colonies were initially white, turned brown with age, and produced irregularly shaped, brown sclerotia. Mycelium was branched at right angles with a septum near the branch and a slight constriction at the branch base. Hyphal cells removed from cultures grown at 25°C on 2% water agar were determined to be multinucleate when stained with 1% safranin O and 3% KOH solution (1) and examined at ×400. Anastomosis groups were determined by pairing isolates on 2% water agar in petri plates (3). Pairings were made with tester strains of AG-1 IA, AG-2-2-1, AG-2-2IIIB, AG-2-2IV, AG-3, AG-4, AG-5, AG-6, and AG-11. Anastomosis was observed only with tester isolates of AG-4, giving C2 and C3 reactions (2). Two representative isolates obtained from symptomatic tissues of C. lucida and C. repens cv. Yvonne were deposited at the Fungal Biodiversity Centre, Centraalbureau voor Schimmelcultures (DISTEF CL1 = CBS-124593 and DISTEF CR1 = CBS-124594, respectively). Pathogenicity tests were performed on container-grown, healthy, 3-month-old cuttings. Ten plants of C. lucida and ten plants of C. repens cv. Yvonne were inoculated near the base of the stem with five 1-cm2 PDA plugs from 5-day-old mycelial cultures. The same number of plants served as uninoculated controls. Plants were maintained at 25°C and 95% relative humidity on a 12-h fluorescent light/dark regimen. Symptoms identical to ones observed in the nursery appeared 5 days after inoculation and all plants died within 15 days. No disease was observed on control plants. A fungus identical in culture morphology to R. solani AG-4 was consistently reisolated from symptomatic tissues, confirming its pathogenicity. To our knowledge, this is the first report of R. solani causing crown and root rot on the genus Coprosma. References: (1) R. J. Bandoni. Mycologia 71:873, 1979. (2) D. E. Carling. Page 37 in: Grouping in Rhizoctonia solani by Hyphal Anastomosis Reactions. Kluwer Academic Publishers, the Netherlands, 1996. (3) C. C. Tu and J. W. Kimbrough. Mycologia 65:941, 1973.


Sign in / Sign up

Export Citation Format

Share Document