Oligandrin, the elicitin-like protein produced by the mycoparasite Pythium oligandrum, induces systemic resistance to Fusarium crown and root rot in tomato plants

2001 ◽  
Vol 39 (7-8) ◽  
pp. 681-696 ◽  
Author(s):  
Nicole Benhamou ◽  
Richard R Bélanger ◽  
Patrice Rey ◽  
Yves Tirilly
2002 ◽  
Vol 92 (4) ◽  
pp. 424-438 ◽  
Author(s):  
Benoît Pharand ◽  
Odile Carisse ◽  
Nicole Benhamou

The potential of a pulp and paper mill residues compost for the control of crown and root rot of greenhouse-grown tomato caused by Fusarium oxysporum f. sp. radicis-lycopersici was ultrastructurally investigated. Peat moss amended with compost substantially reduced disease-associated symptoms. Addition of Pythium oligandrum to either peat moss alone or peat moss amended with compost resulted in a considerable reduction in disease incidence compared with controls grown in peat moss alone. Histological and cytological observations of root samples from Fusarium-inoculated plants revealed that the beneficial effect of compost in reducing disease symptoms is associated with increased plant resistance to fungal colonization. One of the most prominent facets of compost-mediated induced resistance concerned the formation of physical barriers at sites of attempted fungal penetration. These structures, likely laid down to prevent pathogen ingress toward the vascular elements, included callose-enriched wall appositions and osmiophilic deposits around the sites of potential pathogen ingress. Invading hyphae, coated by the osmiophilic material, showed marked cellular disorganization. The use of the wheat germ agglutinin-ovomucoid-gold complex provided evidence that the wall-bound chitin was altered in severely damaged hyphae. A substantial increase in the extent and magnitude of the cellular changes induced by compost was observed when P. oligandrum was supplied to the potting substrate. This finding corroborates the current concept that amendment of composts with specific antagonists may be a valuable option for amplifying their beneficial properties in terms of plant disease suppression.


2015 ◽  
Vol 10 (1) ◽  
pp. 262-269 ◽  
Author(s):  
Mohsen Mohamed Elsharkawy ◽  
Tatsuya Hase ◽  
Yusuke Yagi ◽  
Masafumi Shimizu ◽  
Mitsuro Hyakumachi

2017 ◽  
Vol 113 ◽  
pp. 288-299 ◽  
Author(s):  
A. Nefzi ◽  
H. Jabnoun-Khiareddine ◽  
R. Aydi Ben Abdallah ◽  
N. Ammar ◽  
S. Medimagh-Saïdana ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Xinyue Cai ◽  
Honghai Zhao ◽  
Chen Liang ◽  
Min Li ◽  
Runjin Liu

This study evaluated the effects and underlying mechanisms of different combinations of plant symbiotic microbes, comprising arbuscular mycorrhizal fungi (AMF), plant growth-promoting rhizobacteria (PGPR), and Trichoderma spp., on tomato Fusarium crown and root rot (TFCRR) resistance. A total of 54 treatments were applied in a greenhouse pot experiment to tomato (Solanum lycopersicum) seedlings inoculated with or without Funneliformis mosseae (Fm), Rhizophagus intraradices (Ri), Trichoderma virens l40012 (Tv), Trichoderma harzianum l40015 (Th), Bacillus subtilis PS1-3 (Bs), Pseudomonas fluorescens PS2-6 (Pf), and Fusarium oxysporum f. sp. radicis-lycopersici (Fo). The symbioses on the tomato root system were well developed, and the composite symbiont generated by AMF + Trichoderma spp. was observed for the first time. Compared with other treatments, Ri + Bs + Tv and Fm + Pf + Tv stimulated the greatest improvements in tomato growth and yield. The combination Ri + Pf + Th + Fo resulted in the strongest biocontrol effects on TFCRR, followed by the treatments Th + Pf + Fo and Ri + Th + Fo. Compared with the Fo treatment, most inoculation treatments improved photosynthetic performance and significantly increased defense enzyme activity in tomato plants, of which the treatment Ri + Pf + Th + Fo showed the highest enzyme activity. Metabolome analysis detected changes in a total of 1,266 metabolites. The number of up-regulated metabolites in tomato plants inoculated with Ri + Pf + Th and Ri + Pf + Th + Fo exceeded that of the Fo treatment, whereas the number of down-regulated metabolites showed the opposite trend. It is concluded that AMF + Trichoderma + PGPR is the most effective combination to promote resistance to TFCRR in tomato. The up-regulation and down-regulation of metabolites regulated by symbiotic microbial genes may be an important mechanism by which root symbiotic microorganisms promote plant growth, increase yield, and improve disease resistance.


1985 ◽  
Vol 65 (1) ◽  
pp. 95-98 ◽  
Author(s):  
R. MICHAUD ◽  
C. RICHARD

Fourteen alfalfa cultivars were grown for 2 yr at three locations and evaluated for forage dry matter yield and crown and root rot. Significant differences were found among cultivars for dry matter yield. All cultivars were affected by crown and root rot, most cultivars showing between 20 and 30% of infected tissues. Differences were observed among as well as within the cultivars for disease severity. The frequency of disease-free plants was less than 1.3% of the plants evaluated. Correlation between root rot index and forage yield was −0.87 [Formula: see text] when data were pooled over years and locations.Key words: Lucerne, root rot, cultivar, yield


Sign in / Sign up

Export Citation Format

Share Document