induced resistance
Recently Published Documents


TOTAL DOCUMENTS

1633
(FIVE YEARS 223)

H-INDEX

83
(FIVE YEARS 7)

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Shailesh Mistry ◽  
Akhilesh Kumar Singh

Abstract Background For many years, various drugs have been used for the treatment of infectious diseases but some bacterial microorganisms have induced resistance to several drugs. In a search of new antimicrobial agents, a series of new steroidal hydrazones were designed and synthesized. Result The structures of the compounds were established based on the spectral data. The in vitro antimicrobial activity of some newly synthesized compounds against bacteria and fungi was studied. Conclusion New compounds showed better or similar antimicrobial activity. Designing more efficient steroidal hydrazones from ketosteroid based on the current study may successfully lead to the development of antimicrobial agent. Graphical abstract


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chenqi Yan ◽  
Mengchao Tan

The purpose is to make defect detection in microelectronic processing technology fast, accurate, reliable, and efficient. A new optical remote sensing-optical beam induced resistance change (ORS-OBIRCH) target recognition and location defect detection method is proposed based on an artificial intelligence algorithm, optical remote sensing (ORS), and optical beam induced resistance change (OBIRCH) location technology using deep convolutional neural network. This method integrates the characteristics of high resolution and rich details of the image obtained by ORS technology and combines the advantages of photosensitive temperature characteristics in OBIRCH positioning technology. It can be adopted to identify, capture, and locate the defects of microdevices in the process of microelectronic processing. Simulation results show that this method can quickly reduce the detection range and locate defects accurately and efficiently. The experimental results reveal that the ORS-OBIRCH target recognition defect location detection method can complete the dynamic synchronization of the IC detection system and obtain high-quality images by changing the laser beam irradiation cycle. Moreover, it can analyze and process the detection results to quickly, accurately, and efficiently locate the defect location. Unlike the traditional detection methods, the success rate of detection has been greatly improved, which is about 95.8%, an increase of nearly 40%; the detection time has been reduced by more than half, from 5.5 days to 1.9 days, and the improvement rate has reached more than 65%. In a word, this method has good practical application value in the field of microelectronic processing.


2021 ◽  
Author(s):  
Silvana Laupheimer ◽  
Reinhard Proels ◽  
Sybille B. Unsicker ◽  
Ralph Huckelhoven

Plants have evolved a vast variety of secondary metabolites to counteract biotic stress. Volatile organic compounds (VOCs) are carbon-based molecules induced by herbivore attack or pathogen infection. A mixture of plant VOCs is released for direct or indirect plant defense, plant-plant or plant-insect communication. Recent studies suggest that VOCs can also induce biotic stress resistance in distant organs and neighboring plants. Among other VOCs, green leaf volatiles (GLVs) are quickly released by plant tissue after the onset of herbivory or wounding. We analysed VOCs emitted by 13-day old barley plants (Hordeum vulgare L.) after mechanical wounding using passive absorbers and TD-GC/MS detection. We investigated the influence of pure (Z)-3-hexenyl acetate (Z3HAC) as well as complex VOCs from wounded barley plants on the barley - powdery mildew interaction by pre-exposure in a static and a dynamic headspace connected to a powdery mildew susceptibility assay. GLVs dominated the volatile profile of wounded barley plants with Z3HAC as the most prominent compound. Pre-exposure with Z3HAC resulted in induced resistance of barley against fungal infection. Barley complex volatiles emitted after mechanical wounding, similarly, enhanced resistance in receiver plants. We found volatile-induced modification of the interaction towards an enhanced resistance against fungal infection. In addition, Z3HAC triggered a modulation of the alcohol dehydrogenase isoenzyme activity in receiver plants, a physiological response that possibly contributes to induced resistance. Plant-originated volatile metabolites could be a useful supplementation for future agronomic or horticultural practices.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Dun Jiang ◽  
Mingtao Tan ◽  
Shuai Wu ◽  
Lin Zheng ◽  
Qing Wang ◽  
...  

AbstractArbuscular mycorrhizal (AM) fungi may help protect plants against herbivores; however, their use for the pest control of woody plants requires further study. Here, we investigated the effect of Glomus mosseae colonization on the interactions between gypsy moth larvae and Populus alba × P. berolinensis seedlings and deciphered the regulatory mechanisms underlying the mycorrhizal-induced resistance in the leaves of mycorrhizal poplar using RNA-seq and nontargeted metabolomics. The resistance assay showed that AM fungus inoculation protected poplar seedlings against gypsy moth larvae, as evidenced by the decreased larval growth and reduced larval survival. A transcriptome analysis revealed that differentially expressed genes (DEGs) were involved in jasmonic acid biosynthesis (lipoxygenase, hydroperoxide dehydratase, and allene oxide cyclase) and signal transduction (jasmonate-ZIM domain and transcription factor MYC2) and identified the genes that were upregulated in mycorrhizal seedlings. Except for chalcone synthase and anthocyanidin synthase, which were downregulated in mycorrhizal seedlings, all DEGs related to flavonoid biosynthesis were upregulated, including 4-coumarate-CoA ligase, chalcone isomerase, flavanone 3-hydroxylase, flavonol synthase, and leucoanthocyanidin reductase. The metabolome analysis showed that several metabolites with insecticidal properties, including coumarin, stachydrine, artocarpin, norizalpinin, abietic acid, 6-formylumbelliferone, and vanillic acid, were significantly accumulated in the mycorrhizal seedlings. These findings suggest the potential of mycorrhiza-induced resistance for use in pest management of woody plants and demonstrate that the priming of JA-dependent responses in poplar seedlings contributes to mycorrhiza-induced resistance to insect pests.


2021 ◽  
Vol 7 (01) ◽  
pp. 1-30
Author(s):  
N. S. S. Prabahar ◽  
A. Persson ◽  
L. Larsson

Abstract Horizontal T-foils allow for maximum lift generation within a given span. However, the lift force on a T-foil acts on the symmetry plane of the hull, thereby producing no righting moment. It results in a lack of transverse stability during foil-borne sailing. In this paper, we propose a system, where the height-regulating flap on the trailing edge of the foil is split into a port and a starboard part, whose deflection angles are adjusted to shift the centre of effort of the lift force. Similar to the ailerons which help in steering aircraft, the split-flaps produce an additional righting moment for stabilizing the boat. The improved stability comes, however, at a cost of additional induced resistance. To investigate the performance of the split-flap system a new Dynamic Velocity Prediction Program (DVPP) is developed. Since it is very important for the performance evaluation of the proposed system it is described in some detail in the paper. A complicated effect to model in the DVPP is the flow in the slot between the two flaps and the induced resistance due to the generated vorticity. Therefore, a detailed CFD investigation is carried out to validate a model for the resistance due to the slot effect. Two applications of the split-flap system: an Automated Heel Stability System (AHSS) and a manual offset system for performance increase are studied using a DVPP for a custom-made double-handed skiff. It is shown that the AHSS system can assist the sailors while stabilizing the boat during unsteady wind conditions. The manual offset enables the sailors to adjust the difference between the deflection angles of the two flaps while sailing, thus creating a righting moment whenever required. Such a system would be an advantage whilst sailing with a windward heel. Due to the additional righting moment from the manual offset system, the sails could be less depowered by the sailors resulting in a faster boat despite the additional induced resistance. It is shown in the paper that the control systems for the ride height and the heel stability need to be decoupled. The paper ends with a description of a mechanical system that satisfies this requirement.


2021 ◽  
Vol 22 (23) ◽  
pp. 12710
Author(s):  
Zhuzhu Zhang ◽  
Youhua Long ◽  
Xianhui Yin ◽  
Sen Yang

Sulfur has been previously reported to modulate plant growth and exhibit significant anti-microbial activities. However, the mechanism underlying its diverse effects on plant pathogens has not been elucidated completely. The present study conducted the two-year field experiment of sulfur application to control kiwifruit canker from 2017 to 2018. For the first time, our study uncovered activation of plant disease resistance by salicylic acid after sulfur application in kiwifruit. The results indicated that when the sulfur concentration was 1.5–2.0 kg m−3, the induced effect of kiwifruit canker reached more than 70%. Meanwhile, a salicylic acid high lever was accompanied by the decline of jasmonic acid. Further analysis revealed the high expression of the defense gene, especially AcPR-1, which is a marker of the salicylic acid signaling pathway. Additionally, AcICS1, another critical gene of salicylic acid synthesis, was also highly expressed. All contributed to the synthesis of increasing salicylic acid content in kiwifruit leaves. Moreover, the first key lignin biosynthetic AcPAL gene was marked up-regulated. Thereafter, accumulation of lignin content in the kiwifruit stem and the higher deposition of lignin were visible in histochemical analysis. Moreover, the activity of the endochitinase activity of kiwifruit leaves increased significantly. We suggest that the sulfur-induced resistance against Pseudomonas syringae pv. actinidiae via salicylic activates systemic acquired resistance to enhance plant immune response in kiwifruit.


Sign in / Sign up

Export Citation Format

Share Document