scholarly journals JAZ proteins promote growth and reproduction by restraining transcriptional programs that link primary and specialized metabolism

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Qiang Guo ◽  
Ian Major ◽  
Yuki Yoshida ◽  
Gregg Howe
2015 ◽  
Vol 58 ◽  
pp. 83-100 ◽  
Author(s):  
Selena Gimenez-Ibanez ◽  
Marta Boter ◽  
Roberto Solano

Jasmonates (JAs) are essential signalling molecules that co-ordinate the plant response to biotic and abiotic challenges, as well as co-ordinating several developmental processes. Huge progress has been made over the last decade in understanding the components and mechanisms that govern JA perception and signalling. The bioactive form of the hormone, (+)-7-iso-jasmonyl-l-isoleucine (JA-Ile), is perceived by the COI1–JAZ co-receptor complex. JASMONATE ZIM DOMAIN (JAZ) proteins also act as direct repressors of transcriptional activators such as MYC2. In the emerging picture of JA-Ile perception and signalling, COI1 operates as an E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S proteasome, thereby derepressing transcription factors such as MYC2, which in turn activate JA-Ile-dependent transcriptional reprogramming. It is noteworthy that MYCs and different spliced variants of the JAZ proteins are involved in a negative regulatory feedback loop, which suggests a model that rapidly turns the transcriptional JA-Ile responses on and off and thereby avoids a detrimental overactivation of the pathway. This chapter highlights the most recent advances in our understanding of JA-Ile signalling, focusing on the latest repertoire of new targets of JAZ proteins to control different sets of JA-Ile-mediated responses, novel mechanisms of negative regulation of JA-Ile signalling, and hormonal cross-talk at the molecular level that ultimately determines plant adaptability and survival.


2000 ◽  
Vol 6 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Steven H. Ferguson ◽  
Alan R. Bisset ◽  
François Messier

2010 ◽  
Vol 36 (4) ◽  
pp. 794-805 ◽  
Author(s):  
Xin-Lu SHI ◽  
Cai-Hua QI ◽  
Gui-Jie LIU ◽  
Shuang-Yan BAO ◽  
Xiao-Na HUANG

2010 ◽  
Vol 33 (6) ◽  
pp. 1198-1201
Author(s):  
Xiao-Yu LI ◽  
Zhi-Juan ZHANG ◽  
Lei LI

1991 ◽  
Vol 334 (1270) ◽  
pp. 161-170 ◽  

Many studies have examined the proportion of time that primates devote to feeding on various types of food, but relatively little is known about the intake rates associated with each food. However, the nutritional consequences of foraging can only be interpreted by comparing nutrient intakes with estimated nutrient requirements. The energy available to primates from ingested foods will depend both on the composition of the food and the extent to which various constituents, including fibre fractions, are digested. Both human and non-human primates have relatively low requirements for protein as a consequence of slow growth rates, small milk yields and relatively dilute milk. Because the nutrient demands of growth and reproduction are spread out over time, it appears that primates do not need to seek out foods of particularly high nutrient density, except perhaps during weaning. Although food selection in some species of primates appears to be correlated with the protein concentration of foods, it is unlikely that high dietary protein levels are required, at least when foods of balanced amino acid composition (such as leaves) are included in the diet.


Sign in / Sign up

Export Citation Format

Share Document