scholarly journals Neural activity drives dynamic Ca2+ signals in capillary endothelial cells that shape local brain blood flow

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Thomas Longden ◽  
Osama Harraz ◽  
Grant Hennig ◽  
Bo Shui ◽  
Frank Lee ◽  
...  
2021 ◽  
Author(s):  
Maria Sancho ◽  
Nicholas R. Klug ◽  
Amreen Mughal ◽  
Thomas J. Heppner ◽  
David Hill-Eubanks ◽  
...  

SUMMARYThe dense network of capillaries composed of capillary endothelial cells (cECs) and pericytes lies in close proximity to all neurons, ideally positioning it to sense neuro/glial-derived compounds that regulate regional and global cerebral perfusion. The membrane potential (VM) of vascular cells serves as the essential output in this scenario, linking brain activity to vascular function. The ATP-sensitive K+ channel (KATP) is a key regulator of vascular VM in other beds, but whether brain capillaries possess functional KATP channels remains unknown. Here, we demonstrate that brain capillary ECs and pericytes express KATP channels that robustly control VM. We further show that the endogenous mediator adenosine acts through A2A receptors and the Gs/cAMP/PKA pathway to activate capillary KATP channels. Moreover, KATP channel stimulation in vivo causes vasodilation and increases cerebral blood flow (CBF). These findings establish the presence of KATP channels in cECs and pericytes and suggest their significant influence on CBF.HIGHLIGHTSCapillary network cellular components—endothelial cells and pericytes—possess functional KATP channels.Activation of KATP channels causes profound hyperpolarization of capillary cell membranes.Capillary KATP channels are activated by exogenous adenosine via A2A receptors and cAMP-dependent protein kinase.KATP channel activation by adenosine or synthetic openers increases cerebral blood flow.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Osama F. Harraz ◽  
Nicholas R. Klug ◽  
Amanda Senatore ◽  
Masayo Koide ◽  
Mark T. Nelson

Cerebral blood flow (CBF) is exquisitely controlled to meet the ever-changing demands of active neurons in the brain. Brain capillaries are equipped with sensors of neurovascular coupling agents released from neurons/astrocytes onto the outer wall of a capillary. While capillaries can translate external signals into electrical and Ca2+ changes, control mechanisms from the lumen are less clear. The continuous flux of red blood cells and plasma through narrow-diameter capillaries imposes mechanical forces on the luminal (inner) capillary wall. Whether—and, if so, how—the ever-changing CBF could be mechanically sensed in capillaries is not known. Here, we propose and provide evidence that the mechanosensitive Piezo1 channels operate as mechanosensors in CNS capillaries to ultimately regulate CBF. Patch clamp electrophysiology confirmed the expression and function of Piezo1 channels in brain cortical and retinal capillary endothelial cells. Mechanical or pharmacological activation of Piezo1 channels evoked currents that were sensitive to Piezo1 channel blockers. Using genetically encoded Ca2+ indicator (Cdh5-GCaMP8) mice, we observed that Piezo1 channel activation triggered Ca2+ signals in endothelial cells. An ex vivo pressurized retina preparation was employed to further explore the mechanosensitivity of capillary Piezo1-mediated Ca2+ signals. Genetic and pharmacologic manipulation of Piezo1 in endothelial cells had significant impacts on CBF, reemphasizing the crucial role of mechanosensation in blood flow control. In conclusion, this study shows that Piezo1 channels act as mechanosensors in capillaries, and that these channels initiate crucial Ca2+ signals. We further show that Piezo1 modulates CBF, an observation of profound significance for the control of brain blood flow in health and in disorders where hemodynamic forces are disrupted, such as hypertension.


2015 ◽  
Vol 35 (39) ◽  
pp. 13463-13474 ◽  
Author(s):  
D. G. Rosenegger ◽  
C. H. T. Tran ◽  
J. I. Wamsteeker Cusulin ◽  
G. R. Gordon

2000 ◽  
Vol 39 (02) ◽  
pp. 37-42 ◽  
Author(s):  
P. Hartikainen ◽  
J. T. Kuikka

Summary Aim: We demonstrate the heterogeneity of regional cerebral blood flow using a fractal approach and singlephoton emission computed tomography (SPECT). Method: Tc-99m-labelled ethylcysteine dimer was injected intravenously in 10 healthy controls and in 10 patients with dementia of frontal lobe type. The head was imaged with a gamma camera and transaxial, sagittal and coronal slices were reconstructed. Two hundred fifty-six symmetrical regions of interest (ROIs) were drawn onto each hemisphere of functioning brain matter. Fractal analysis was used to examine the spatial heterogeneity of blood flow as a function of the number of ROIs. Results: Relative dispersion (= coefficient of variation of the regional flows) was fractal-like in healthy subjects and could be characterized by a fractal dimension of 1.17 ± 0.05 (mean ± SD) for the left hemisphere and 1.15 ± 0.04 for the right hemisphere, respectively. The fractal dimension of 1.0 reflects completely homogeneous blood flow and 1.5 indicates a random blood flow distribution. Patients with dementia of frontal lobe type had a significantly lower fractal dimension of 1.04 ± 0.03 than in healthy controls. Conclusion: Within the limits of spatial resolution of SPECT, the heterogeneity of brain blood flow is well characterized by a fractal dimension. Fractal analysis may help brain scientists to assess age-, sex- and laterality-related anatomic and physiological changes of brain blood flow and possibly to improve precision of diagnostic information available for patient care.


Sign in / Sign up

Export Citation Format

Share Document