local brain
Recently Published Documents


TOTAL DOCUMENTS

241
(FIVE YEARS 58)

H-INDEX

37
(FIVE YEARS 4)

2021 ◽  
Vol 13 ◽  
Author(s):  
Sebastian G. Popescu ◽  
Ben Glocker ◽  
David J. Sharp ◽  
James H. Cole

We propose a new framework for estimating neuroimaging-derived “brain-age” at a local level within the brain, using deep learning. The local approach, contrary to existing global methods, provides spatial information on anatomical patterns of brain ageing. We trained a U-Net model using brain MRI scans from n = 3,463 healthy people (aged 18–90 years) to produce individualised 3D maps of brain-predicted age. When testing on n = 692 healthy people, we found a median (across participant) mean absolute error (within participant) of 9.5 years. Performance was more accurate (MAE around 7 years) in the prefrontal cortex and periventricular areas. We also introduce a new voxelwise method to reduce the age-bias when predicting local brain-age “gaps.” To validate local brain-age predictions, we tested the model in people with mild cognitive impairment or dementia using data from OASIS3 (n = 267). Different local brain-age patterns were evident between healthy controls and people with mild cognitive impairment or dementia, particularly in subcortical regions such as the accumbens, putamen, pallidum, hippocampus, and amygdala. Comparing groups based on mean local brain-age over regions-of-interest resulted in large effects sizes, with Cohen's d values >1.5, for example when comparing people with stable and progressive mild cognitive impairment. Our local brain-age framework has the potential to provide spatial information leading to a more mechanistic understanding of individual differences in patterns of brain ageing in health and disease.


2021 ◽  
Author(s):  
Davide Momi ◽  
Recep A. Ozdemir ◽  
Ehsan Tadayon ◽  
Pierre Boucher ◽  
Alberto Di Domenico ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Oriol Mirallas ◽  
Francesca Filippi-Arriaga ◽  
Irene Hernandez Hernandez ◽  
Anton Aubanell ◽  
Anas Chaachou ◽  
...  

Nelson’s syndrome is considered a severe side effect that can occur after a total bilateral adrenalectomy in patients with Cushing’s disease. It usually presents with clinical manifestations of an enlarging pituitary tumor including visual and cranial nerve alterations, and if not treated, can cause death through local brain compression or invasion. The first therapeutic option is surgery but in extreme cases of inaccessible or resistant aggressive pituitary tumors; the off-label use of chemotherapy with capecitabine and temozolomide can be considered. However, the use of this treatment is controversial due to adverse events, lack of complete response, and inability to predict results. We present the case of a 48-year-old man diagnosed with Nelson’s syndrome with prolonged partial response and significant clinical benefit to treatment with capecitabine and temozolomide.


2021 ◽  
Author(s):  
Pardis Moradi ◽  
akbar hasanzadeh ◽  
Fatemh Radmanesh ◽  
Saideh Rajai Daryasarei ◽  
Elaheh Sadat Hosseini ◽  
...  

Abstract An efficient and safe delivery system for the transfection of CRISPR plasmid (p/CRISPR) into target cells can open new avenues for the treatment of various diseases. Herein, we design a novel nonvehicle by integrating an arginine-disulfide linker with LMW PEI (PEI1.8k) for the delivery of p/CRISPR. These PEI1.8k-Arg nanoparticles facilitate the plasmid release and improve both membrane permeability and nuclear localization, thereby exhibiting higher transfection efficiency compared to native PEI1.8k in the delivery of nanocomplexes composed of PEI1.8k-Arg and p/CRISPR into conventional cells (HEK 293T). This nanovehicle is also able to transfect p/CRISPR in a wide variety of cells, including hard-to-transfect primary cells (HUVECs), cancer cells (HeLa), and neuronal cells (PC-12) with nearly 5 to 10 times higher efficiency compared to the polymeric gold standard transfection agent. Furthermore, the PEI1.8k-Arg nanoparticles can edit the GFP gene in the HEK 293T-GFP reporter cell line by delivering all possible forms of CRISPR/Cas9 system (e.g., plasmid encoding Cas9 and sgRNA targeting GFP, and Cas9/sgRNA ribonucleoproteins (RNPs) as well as Cas9 expression plasmid and in vitro-prepared sgRNA) into HEK 293T-GFP cells. The successful delivery of p/CRISPR into local brain tissue is also another remarkable capability of these nanoparticles. In view of all the exceptional benefits of this safe nanocarrier, it is expected to break new ground in the field of gene editing, particularly for therapeutic purposes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shelli R. Kesler ◽  
Tien Tang ◽  
Ashley M. Henneghan ◽  
Michelle Wright ◽  
M. Waleed Gaber ◽  
...  

Objective: We aimed to characterize local brain network connectivity in long-term breast cancer survivors compared to newly diagnosed patients.Methods: Functional magnetic resonance imaging (fMRI) and subjective cognitive and psychological function data were obtained from a group of 76 newly diagnosed, pre-treatment female patients with breast cancer (mean age 57 ± 7 years) and a separate group of 80, post-treatment, female breast cancer survivors (mean age 58 ± 8; mean time since treatment 44 ± 43 months). The network-based statistic (NBS) was used to compare connectivity of local brain edges between groups. Hubs were defined as nodes with connectivity indices one standard deviation or more above network mean and were further classified as provincial (higher intra-subnetwork connectivity) or connector (higher inter-subnetwork connectivity) using the participation coefficient. We determined the hub status of nodes encompassing significantly different edges and correlated the centralities of edges with behavioral measures.Results: The post-treatment group demonstrated significantly lower subjective cognitive function (W = 3,856, p = 0.004) but there were no group differences in psychological distress (W = 2,866, p = 0.627). NBS indicated significantly altered connectivity (p < 0.042, corrected) in the post-treatment group compared to the pre-treatment group largely in temporal, frontal-temporal and temporal-parietal areas. The majority of the regions projecting these connections (78%) met criteria for hub status and significantly less of these hubs were connectors in the post-treatment group (z = 1.85, p = 0.031). Subjective cognitive function and psychological distress were correlated with largely non-overlapping edges in the post-treatment group (p < 0.05).Conclusion: Widespread functional network alterations are evident in long-term survivors of breast cancer compared to newly diagnosed patients. We also demonstrated that there are both overlapping and unique brain network signatures for subjective cognitive function vs. psychological distress.


2021 ◽  
Vol 11 (10) ◽  
pp. 1270
Author(s):  
Iwona Rościszewska-Żukowska ◽  
Marek Podyma ◽  
Mariusz Stasiołek ◽  
Małgorzata Siger

Radiological activity in the post-partum period in MS patients is a well-known phenomenon, but there is no data concerning the influence of pregnancy on regional brain atrophy. The aim of this article was to investigate local brain atrophy in the peri-pregnancy period (PPP) in patients with MS. Thalamic volume (TV); corpus callosum volume (CCV) and classical MRI activity (new gadolinium enhancing lesions (Gd+), new T2 lesions, T1 lesions volume (T1LV) and T2 lesions volume (T2LV)) were analyzed in 12 clinically stable women with relapsing–remitting MS and with MRI performed in the PPP. We showed that there was a significant decrease in TV (p = 0.021) in the PPP. We also observed a significant increase in the T1 lesion volume (p = 0.028), new gadolinium-enhanced and new T2 lesions (in 46% and 77% of the scans, respectively) in the post-partum period. Our results suggest that the PPP in MS may be associated not only with classical MRI activity but, also, with regional brain atrophy.


2021 ◽  
Vol 15 ◽  
Author(s):  
Elizabeth Susan Maywood ◽  
Johanna Elizabeth Chesham ◽  
Raphaelle Winsky-Sommerer ◽  
Nicola Jane Smyllie ◽  
Michael Harvey Hastings

2021 ◽  
Author(s):  
Yanming Li ◽  
Jian Kang ◽  
Chong Wu ◽  
Ivo Dinov ◽  
jinxiang Hu ◽  
...  

Introduction: A computationally fast machine learning method is introduced for uncovering the whole-brain voxel-level connectomic spectra that differentiates different status of Alzheimer's disease (AD). The method is applied to the Alzheimer's Disease Neuroimaging Initiative (ADNI) Fluorine-fluorodeoxyglucose Positron Emission Tomography (FDG-PET) imaging and clinical data and identified novel AD/MCI differentiating connectomic neuroimaging biomarkers. Methods: A divide-and-conquer algorithm is introduced for detect informative local brain networks at voxel level and whole-brain scale. The connection information within the local networks is integrated into the node voxels, which makes detection of the marginally weak signals possible. Prediction accuracy is significantly improved by incorporating the local brain networks and marginally weak signals. Results: Brain connectomic structures differentiating AD and mild cognitive impairment (MCI), AD and healthy, and MIC and healthy were discovered. We identified novel AD/MCI-associated neuroimaging biomarkers by integrating local brain networks and marginally weak signals. For example, network-based signals in paracentral lobule (p-value=6.1e-5), olfactory cortex (p-value=4.6e-5), caudate nucleus (1.8e-3) and precentral gyrus (1.8e-3) are informative in differentiating AD and MCI. Connections between calcarine sulcus and lingual gyrus (p-value=0.049), between parahippocampal gyrus and Amygdala (p-value=0.025), between rolandic opercula and insula lobes (p-values=0.0028 and 0.0026). An overall prediction accuracy of 95.3% was achieved by integrating the selected local brain networks and marginally weak signals, compared to 84.0% by not considering the inter-voxel connections and using marginally strong signals only. Conclusion: (i) The connectomic structures differentiating AD and MCI are significantly different to that differentiating MCI and healthy, which may indicate different neuronal etiology for AD and MCI. (ii) Many neuroimaging biomarkers exert their effects on the outcome diseases through their connections to other markers. Integrating such connections can help identify novel neuroimaging biomarkers and improve disease prediction accuracy.


2021 ◽  
Vol 15 ◽  
Author(s):  
Dongpeng Wu ◽  
Han Zhao ◽  
Huali Gu ◽  
Bin Han ◽  
Qingqing Wang ◽  
...  

BackgroundThere is evidence that the T allele of rs405509 located in the apolipoprotein E (APOE) promotor region is a risk factor for Alzheimer’s disease (AD). However, the effect of the T/T allele on brain function in non-demented aging is still unclear.MethodsWe analyzed the effects of the rs405509 T/T allele on cognitive performances using multiple neuropsychological tests and local brain function using resting-state functional magnetic resonance imaging (rs-fMRI).ResultsSignificant differences were found between T/T carriers and G allele carriers on general cognitive status, memory, and attention (p < 0.05). Rs-fMRI analyses demonstrated decreased amplitude of low frequency fluctuation (ALFF) in the right middle frontal gyrus, decreased percent amplitude of fluctuation (PerAF) in the right middle frontal gyrus, increased regional homogeneity (ReHo) in the right cerebellar tonsil and decreased ReHo in the right putamen, and decreased degree centrality (DC) in the left middle frontal gyrus (p < 0.05, corrected). Furthermore, significant correlations were found between cognitive performance and these neuroimaging changes (p < 0.05).ConclusionThese findings suggest that T/T allele may serve as an independent risk factor that can influence brain function in different regions in non-demented aging.


Sign in / Sign up

Export Citation Format

Share Document