Aging is Associated with Reduced Calcium Release and a Transformation of the Fast Fiber Population in Mouse Lumbrical Muscles

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Yu Su ◽  
Lemuel A. Brown ◽  
Susan V. Brooks ◽  
Dennis R. Claflin
2019 ◽  
Vol 97 (5) ◽  
pp. 429-435 ◽  
Author(s):  
Ian C. Smith ◽  
Rene Vandenboom ◽  
A. Russell Tupling

The amount of calcium released from the sarcoplasmic reticulum in skeletal muscle rapidly declines during repeated twitch contractions. In this study, we test the hypothesis that caffeine can mitigate these contraction-induced declines in calcium release. Lumbrical muscles were isolated from male C57BL/6 mice and loaded with the calcium-sensitive indicator, AM-furaptra. Muscles were then stimulated at 8 Hz for 2.0 s in the presence or absence of 0.5 mM caffeine, at either 30 °C or 37 °C. The amplitude and area of the furaptra-based intracellular calcium transients and force produced during twitch contractions were calculated. For each of these measures, the values for twitch 16 relative to twitch 1 were higher in the presence of caffeine than in the absence of caffeine at both temperatures. We conclude that caffeine can attenuate contraction-induced diminutions of calcium release during repeated twitch contractions, thereby contributing to the inotropic effects of caffeine.


Author(s):  
P.L. Moore ◽  
P.L. Sannes ◽  
H.L. Bank ◽  
S.S. Spicer

It is thought that calcium and/or magnesium may play important roles in polymorphonuclear (PMN) leukocyte functions such as chemotaxis, adhesion and phagocytosis. Yet, a clear understanding of the biological roles of these ions has awaited the development of techniques which permit a selective alteration of intracellular ion concentrations. Recently, treatment of cells with the ionophore A23187 has been used to alter intracellular divalent cation concentrations. This ionophore is a lipid soluble antibiotic produced by Streptomyces chartreusensis that complexes with both calcium and magnesium (3) and is believed to carry these ions across biological membranes (4). Biochemical investigations of human PMN leukocytes demonstrate that cells treated with A23187 and extracellular calcium release their lysosomal enzymes into the extracellular medium without rupturing and releasing their soluble cytoplasmic enzymes (5,6). The aim of the present study and and a companion report (7) was to investigate the structural changes that occur in leukocytes during ionophore-induced lysosomal enzyme release.


2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 6-7
Author(s):  
E Fekete ◽  
C B Amat ◽  
T Allain ◽  
M Hollenberg ◽  
K Mihara ◽  
...  

Abstract Background Giardia duodenalis has been shown to alter the structure of the intestinal mucus layers during infection via obscure mechanisms. We hypothesize that goblet cell activity may be disrupted in part due to proteolytic activation of protease-activated receptor 2 (PAR2) by Giardia proteases, resulting in disruption of mucus production and secretion by intestinal goblet cells. Aims Characterize alterations in goblet cell activity during Giardia infection, focusing on the roles of Giardia protease activity and PAR2. Methods Chinese hamster ovary cells transfected with nano-luciferase tagged PAR2 were incubated with Giardia NF or GSM trophozoites. Cleavage within the activation domain results in release of enzymes into the supernatant. Luminescence in the supernatant was measured as an indication of PAR cleavage by Giardia. LS174T, a human colonic mucus-producing cell line, was infected with Giardia trophozoites (isolates NF, WB, S2, and GSM). Prior to infection, trophozoites were treated with E64, a broad-spectrum cysteine protease inhibitor, and LS174T were treated with a PAR2 antagonist, a calcium chelator, or an ERK1/2 inhibitor. Quantitative PCR (qPCR) was performed for the MUC2 mucin gene. Wild-type (WT) and PAR2 knockout (KO) mice were infected with Giardia. Colonic mucus was stained using fluorescein-coupled wheat-germ agglutinin (WGA), and qPCR was performed for Muc2 and Muc5ac. Results Giardia trophozoites cleaved PAR2 within the N-terminal activation domain in a cysteine protease-dependent manner. Cleavage was isolate dependent, with isolates that show higher protease activity cleaving at a higher rate. High protease activity Giardia isolates increased MUC2 gene expression in LS714T. This increase was attenuated by inhibition of Giardia cysteine protease activity, and by antagonism of PAR2, inhibition of calcium release, or inhibition of ERK1/2 activity in LS174T cells. Both Muc2 and Muc5ac expression were upregulated in the colons of WT mice in response to Giardia infection, while in the jejunum Muc2 expression decreased and Muc5ac expression increased. In KO, no changes in gene expression were seen in the colon in response to Giardia infection, while in the jejunum, Muc2 expression was unchanged and Muc5ac expression decreased. Both WT infected and KO noninfected mice showed thinning of the colonic mucus layer compared to WT controls. There was some recovery in thickness in KO infected mice. Conclusions PAR2 plays a significant role in the regulation of mucin gene expression in mice and in a human colonic cell line. Results suggest that Giardia cysteine proteases cleave and activate PAR2, leading to calcium release and activation of the MAPK pathway in goblet cells, ultimately leading to altered mucin gene expression. Findings identify a novel regulatory pathway for mucus production by intestinal goblet cells. Funding Agencies CAG, CCC


Sign in / Sign up

Export Citation Format

Share Document