bacterial clearance
Recently Published Documents


TOTAL DOCUMENTS

625
(FIVE YEARS 127)

H-INDEX

60
(FIVE YEARS 7)

Aquaculture ◽  
2022 ◽  
Vol 549 ◽  
pp. 737803
Author(s):  
Haiying Liang ◽  
Rongcheng Liang ◽  
Huijuan Wang ◽  
Xiaolin Zhang ◽  
Xiaojun Yan ◽  
...  

2022 ◽  
Vol 10 (1) ◽  
pp. 179
Author(s):  
Jiří Trousil ◽  
Lucia Frgelecová ◽  
Pavla Kubíčková ◽  
Kristína Řeháková ◽  
Vladimír Drašar ◽  
...  

Legionnaires’ disease is a severe form of lung infection caused by bacteria belonging to the genus Legionella. The disease severity depends on both host immunity and L. pneumophila virulence. The objective of this study was to describe the pathological spectrum of acute pneumonia caused by a virulent clinical isolate of L. pneumophila serogroup 1, sequence type 62. In A/JOlaHsd mice, we compared two infectious doses, namely, 104 and 106 CFU, and their impact on the mouse status, bacterial clearance, lung pathology, and blood count parameters was studied. Acute pneumonia resembling Legionnaires’ disease has been described in detail.


2022 ◽  
Vol 18 (1) ◽  
pp. e1010166
Author(s):  
Thao Thanh Tran ◽  
Carmen D. Mathmann ◽  
Marcela Gatica-Andrades ◽  
Rachel F. Rollo ◽  
Melanie Oelker ◽  
...  

A hallmark of Listeria (L.) monocytogenes pathogenesis is bacterial escape from maturing entry vacuoles, which is required for rapid bacterial replication in the host cell cytoplasm and cell-to-cell spread. The bacterial transcriptional activator PrfA controls expression of key virulence factors that enable exploitation of this intracellular niche. The transcriptional activity of PrfA within infected host cells is controlled by allosteric coactivation. Inhibitory occupation of the coactivator site has been shown to impair PrfA functions, but consequences of PrfA inhibition for L. monocytogenes infection and pathogenesis are unknown. Here we report the crystal structure of PrfA with a small molecule inhibitor occupying the coactivator site at 2.0 Å resolution. Using molecular imaging and infection studies in macrophages, we demonstrate that PrfA inhibition prevents the vacuolar escape of L. monocytogenes and enables extensive bacterial replication inside spacious vacuoles. In contrast to previously described spacious Listeria-containing vacuoles, which have been implicated in supporting chronic infection, PrfA inhibition facilitated progressive clearance of intracellular L. monocytogenes from spacious vacuoles through lysosomal degradation. Thus, inhibitory occupation of the PrfA coactivator site facilitates formation of a transient intravacuolar L. monocytogenes replication niche that licenses macrophages to effectively eliminate intracellular bacteria. Our findings encourage further exploration of PrfA as a potential target for antimicrobials and highlight that intra-vacuolar residence of L. monocytogenes in macrophages is not inevitably tied to bacterial persistence.


2022 ◽  
Author(s):  
Stefanie Krug ◽  
Pankaj Prasad ◽  
Shiqi Xiao ◽  
Shichun Lun ◽  
Camilo A. Ruiz-Bedoya ◽  
...  

Tuberculosis (TB) is a devastating infectious disease that continues to cause millions of human deaths every year. Even though most cases of TB can be cured with a 6-month antibiotic combination therapy, these long treatment durations have led to the emergence of multi-drug resistance and pose a major hurdle to global TB control. Despite numerous advances in TB drug development, a substantially shortened treatment time has yet to be achieved. Given the rise in antibiotic resistance, an alternative strategy to the direct targeting of M. tuberculosis (M.tb) is the development of host-directed therapies (HDTs) that promote bacterial clearance and/or lung health when given adjunctive to standard TB antibiotics. We recently discovered that a small molecule inhibitor of the Integrated Stress Response (ISR), which is abnormally activated in TB and associated with the formation of necrotic granulomas, reduced M.tb numbers and lung inflammation in mice. Here, we evaluated the therapeutic potential of adjunctive ISR inhibition in the context of standard TB therapy. Throughout the course of treatment, ISR inhibition robustly lowered bacterial burdens compared to standard TB therapy alone and accelerated the time-to-sterility in mice, as demonstrated by significantly reduced relapse rates after 4 months of treatment. In addition, mice receiving adjunctive ISR inhibition tended to have reduced lung necrosis and inflammation. Together, our findings identify the ISR pathway as a promising therapeutic target with the potential of shortening TB treatment durations and improving lung health.


2021 ◽  
Vol 12 ◽  
Author(s):  
Heather A. Parker ◽  
Lorna Forrester ◽  
Christopher D. Kaldor ◽  
Nina Dickerhof ◽  
Mark B. Hampton

The mycobacterium genus contains a broad range of species, including the human pathogens M. tuberculosis and M. leprae. These bacteria are best known for their residence inside host cells. Neutrophils are frequently observed at sites of mycobacterial infection, but their role in clearance is not well understood. In this review, we discuss how neutrophils attempt to control mycobacterial infections, either through the ingestion of bacteria into intracellular phagosomes, or the release of neutrophil extracellular traps (NETs). Despite their powerful antimicrobial activity, including the production of reactive oxidants such as hypochlorous acid, neutrophils appear ineffective in killing pathogenic mycobacteria. We explore mycobacterial resistance mechanisms, and how thwarting neutrophil action exacerbates disease pathology. A better understanding of how mycobacteria protect themselves from neutrophils will aid the development of novel strategies that facilitate bacterial clearance and limit host tissue damage.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jae-Hun Ahn ◽  
Ji-Yeon Park ◽  
Dong-Yeon Kim ◽  
Tae-Sung Lee ◽  
Do-Hyeon Jung ◽  
...  

Mycobacterium abscessus (MAB) is one of the rapidly growing, multidrug-resistant non-tuberculous mycobacteria (NTM) causing various diseases including pulmonary disorder. Although it has been known that type I interferons (IFNs) contribute to host defense against bacterial infections, the role of type I IFNs against MAB infection is still unclear. In the present study, we show that rIFN-β treatment reduced the intracellular growth of MAB in macrophages. Deficiency of IFN-α/β receptor (IFNAR) led to the reduction of nitric oxide (NO) production in MAB-infected macrophages. Consistently, rIFN-β treatment enhanced the expression of iNOS gene and protein, and NO production in response to MAB. We also found that NO is essential for the intracellular growth control of MAB within macrophages in an inhibitor assay using iNOS-deficient cells. In addition, pretreatment of rIFN-β before MAB infection in mice increased production of NO in the lungs at day 1 after infection and promoted the bacterial clearance at day 5. However, when alveolar macrophages were depleted by treatment of clodronate liposome, rIFN-β did not promote the bacterial clearance in the lungs. Moreover, we found that a cytosolic receptor nucleotide-binding oligomerization domain 2 (NOD2) is required for MAB-induced TANK binding kinase 1 (TBK1) phosphorylation and IFN-β gene expression in macrophages. Finally, increase in the bacterial loads caused by reduction of NO levels was reversed by rIFN-β treatment in the lungs of NOD2-deficient mice. Collectively, our findings suggest that type I IFNs act as an intermediator of NOD2-induced NO production in macrophages and thus contribute to host defense against MAB infection.


Author(s):  
Sven Engel ◽  
Marcel Doerflinger ◽  
Ariane R. Lee ◽  
Andreas Strasser ◽  
Marco J. Herold ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
G. L. Xia ◽  
R. L. Jiang

Abstract Objective To investigate how to use polymyxin B rationally in order to produce the best efficacy and safety in patients with carbapenem-resistant gram-negative organisms (CRO) infection. Methods The clinical characteristics and microbiological results of 181 patients caused by CRO infection treated with polymyxin B in the First Affiliated Hospital from July 2018 to May 2020 were retrospectively analyzed. The bacterial clearance rate, clinical efficacy, adverse drug reactions and 28 days mortality were evaluated. Results The overall effective rate of 181 patients was 49.72%, the total bacterial clearance rate was 42.0%, and the 28 day all-cause mortality rate was 59.1%. The effective rate and bacterial clearance rate in the group of less than 24 h from the isolation of CRO to the use of polymyxin B were significantly higher than those in the group of more than 24 h. Logistics multivariate regression analysis showed that the predictive factors for effective treatment of CRO with polymyxin B were APACHEII score, duration of polymyxin B treatment, combination of polymyxin B and other antibiotics, and bacterial clearance. 17 cases (9.36%) of acute kidney injury were considered as polymyxin B nephrotoxicity and 4 cases (23.5%) recovered after polymyxin B withdrawal. After 14 days of polymyxin B use, 3 cases of polymyxin B resistance appeared, and there were 2 cases of polymyxin B resistance in the daily dose 1.5 mg/kg/day group. Conclusion For CRO infection, the treatment of polymyxin B should be early, combined, optimal dose and duration of treatment, which can achieve better clinical efficacy and microbial reactions, and reduce the adverse reactions and drug resistance.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Ravikumar A. Sitapara ◽  
Alex G. Gauthier ◽  
Vivek S. Patel ◽  
Mosi Lin ◽  
Michelle Zur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document