scholarly journals Upregulation of NHE3 in renal proximal tubule is associated with hGRK4 486V‐promoted salt sensitivity in transgenic mice

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Xiaoyan Wang ◽  
Zheng Wang ◽  
Laureano D Asico ◽  
Crisanto Escano ◽  
Pedro A Jose
Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Julia M Carlson ◽  
John J Gildea ◽  
Helen E McGrath ◽  
Robin A Felder

SLC4A5 is a sodium-bicarbonate co-transporter involved with sodium homeostasis. Based on unpublished data, two SLC4A5 single nucleotide polymorphisms (SNPs rs1017783 and rs7571842) have been highly associated with an individual’s salt-sensitivity status. Since the renal proximal tubule (RPT) regulates a large percentage of renal sodium transport, we investigated whether SLC4A5 was present in this nephron segment. Using confocal immunofluorescence microscopy, we found expression of SLC4A5 in human RPT cell plasma membrane and intracellular membrane vesicles. We then examined the physiologic implications of the SLC4A5 SNPs in human RPT cells. Using immunoblotting and RT-PCR, we found no significant differences in basal SLC4A5 expression in RPT cells between individuals that are homozygous variant at both SNPs and individuals that are wild-type (WT) for both alleles. Stimulation of the dopaminergic system with 1μM fenoldopam, or the renin-angiotensin system with 10 nM angiotensin II or 10 nM angiotensin III (n=18 per treatment) over 3 and 24 hours did not significantly alter SLC4A5 protein or 24 hour mRNA expression. These data indicate that SLC4A5 is not directly regulated by either the renal dopaminergic or renin-angiotensin system. However, 24 hour stimulation with the sodium ionophore monensin (MON, 1μM) significantly increased overall mRNA expression of SLC4A5 by 182±0.098% over vehicle (VEH) (ΔCq VEH=0.283±0.035; n=18, p<0.001). There was also a significant increase in SLC4A5 mRNA in three cell lines homozygous variant for both alleles compared to three WT cell lines following MON treatment at both 3 hours (138±0.10%; ΔCq WT MON = 0.5±0.052; n=9, p<0.05) and 24 hours (161±0.11%; ΔCq WT MON = 0.39±0.066; n=9, p<0.02). Three but not 24 hour stimulation with MON also significantly increased overall expression of SLC4A5 protein (137±0.00041%; RFU VEH=0.0030±0.00022; n=18, p<0.01). MON, by allowing salt to enter a cell, may be activating an enhancer that leads to increased transcription of SLC4A5 mRNA that is more effective in homozygous variant cell lines. These novel observations demonstrate that SNPs located in a non-promoter DNA intron are associated with enhanced promoter activity that is regulated by altered intracellular sodium.


2004 ◽  
Vol 18 (3) ◽  
pp. 290-298 ◽  
Author(s):  
Thu H. Le ◽  
Michael I. Oliverio ◽  
Hyung-Suk Kim ◽  
Harmony Salzler ◽  
Rajesh C. Dash ◽  
...  

To understand the physiological role of angiotensin type 1 (AT1) receptors in the proximal tubule of the kidney, we generated a transgenic mouse line in which the major murine AT1 receptor isoform, AT1A, was expressed under the control of the P1 portion of the γ-glutamyl transpeptidase (γGT) promoter. In transgenic mice, this promoter has been shown to confer cell-specific expression in epithelial cells of the renal proximal tubule. To avoid random integration of multiple copies of the transgene, we used gene targeting to produce mice with a single-copy transgene insertion at the hypoxanthine phosphoribosyl transferase ( Hprt) locus on the X chromosome. The physiological effects of the γGT-AT1A transgene were examined on a wild-type background and in mice with targeted disruption of one or both of the murine AT1 receptor genes ( Agtr1a and Agtr1b). On all three backgrounds, γGT-AT1A transgenic mice were healthy and viable. On the wild-type background, the presence of the transgene did not affect development, blood pressure, or kidney structure. Despite relatively low levels of expression in the proximal tubule, the transgene blunted the increase in renin expression typically seen in AT1-deficient mice and partially rescued the kidney phenotype associated with Agtr1a−/− Agtr1b−/− mice, significantly reducing cortical cyst formation by more than threefold. However, these low levels of cell-specific expression of AT1 receptors in the renal proximal tubule did not increase the low blood pressures or abolish sodium sensitivity, which are characteristic of AT1 receptor-deficient mice. Although our studies do not clearly identify a role for AT1 receptors in the proximal tubules of the kidney in blood pressure homeostasis, they support a major role for these receptors in modulating renin expression and in maintaining structural integrity of the renal cortex.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
John J Gildea ◽  
Peng Xu ◽  
Katie Schiermeyer ◽  
Wei Yue ◽  
Robin A Felder

Increased morbidity and mortality occurs in some individuals consuming low sodium diets. Inverse salt sensitivity (ISS) is the paradoxical increase in blood pressure of individuals to a low sodium diet. Our group previously reported decreased expression of dopamine type 2 receptor (D 2 R), increased expression Aminopeptidase N, and increased Ang II dependent sodium transport in human urine derived renal proximal tubule cells isolated from ISS participants. In an attempt to understand the increased Ang II sensitivity demonstrated in ISS cells, we examined angiotensin converting enzyme 2 (ACE2), a membrane associated enzyme involved in the metabolism of Ang II. Urine derived renal proximal tubule cells grown and immortalized from ISS participants were compared to cells from salt resistant (SR) participants cultured in iso-osmotic media with low salt (LS, 90 mM NaCl) normal salt (NS, 140 mM NaCl) and high salt (HS, 190 mM NaCl). Cells were incubated in LS, NS, and HS media with and without losartan (LOS,1 μM) overnight (18 hours) and ACE2 expression levels determined by in-cell western blot. A monoclonal antibody specific to an extracellular epitope of ACE2 was used as the primary antibody and an Alexa-647 anti-mouse secondary antibody. ACE2 expression was only reduced in ISS cells in LS condition (28.7±2.1 % reduction, ISS LS vs SR LS, N=4 per group, p<0.05). Addition of losartan completely blocked the decrease in ACE2 expression in low salt conditions in ISS in urine derived human renal proximal tubule cells. No other changes in ACE2 expression were found between ISS and SR in either NS or HS conditions and with or without losartan. In conclusion, a decreased expression of ACE2 in ISS urine proximal tubule cells could explain the previously reported increased sensitivity of ISS cells to Ang II by increasing the half-life of Ang II under low salt conditions.


2008 ◽  
Vol 294 (6) ◽  
pp. F1481-F1486 ◽  
Author(s):  
Huiping Li ◽  
Xiyou Zhou ◽  
Deborah R. Davis ◽  
Di Xu ◽  
Curt D. Sigmund

To facilitate the study of renal proximal tubules, we generated a transgenic mouse strain expressing an improved Cre recombinase (iCre) under the control of the kidney androgen-regulated protein (KAP) promoter. The transgene was expressed in the kidney of male mice but not in female mice. Treatment of female transgenic mice with androgen induced robust expression of the transgene in the kidney. We confirmed the presence of Cre recombinase activity and the cell specificity by breeding the KAP2-iCRE mice with ROSA26 reporter mice. X-Gal staining of kidney sections from male double transgenic mice showed robust staining in the epithelial cells of renal proximal tubules. β-Gal staining in female mice became evident in proximal tubules after administration of androgen. This model of inducible Cre recombinase in the renal proximal tubule should provide a novel useful tool for studying the physiological significance of genes expressed in the renal proximal tubule. This has advantages over other current models where Cre recombinase expression is constitutive, not inducible.


Hypertension ◽  
2019 ◽  
Vol 74 (Suppl_1) ◽  
Author(s):  
Peng Xu ◽  
Charleston V Sudarikova ◽  
Daria V Ilatovskaya ◽  
John J Gildea ◽  
Wei Yue ◽  
...  

Author(s):  
J. M. Barrett ◽  
P. M. Heidger

Microbodies have received extensive morphological and cytochemical investigation since they were first described by Rhodin in 1954. To our knowledge, however, all investigations of microbodies and cytoplasmic bodies of rat renal proximal tubule cells have employed immersion fixation. Tisher, et al. have shown convincing evidence of fine structural alteration of microbodies in rhesus monkey kidney following immersion fixation; these alterations were not encountered when in vivo intravascular perfusion was employed. In view of these studies, and the fact that techniques for perfusion fixation have been established specifically for the rat kidney by Maunsbach, it seemed desirable to employ perfusion fixation to study the fine structure and distribution of microbodies and cytoplasmic bodies within the rat renal proximal tubule.


2013 ◽  
Vol 9 (2) ◽  
pp. 148-155 ◽  
Author(s):  
Shoko Horita ◽  
George Seki ◽  
Hideomi Yamada ◽  
Masashi Suzuki ◽  
Kazuhiko Koike ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document