scholarly journals Enhanced cyclooxygenase 2‐mediated vasodilatation in coronary arteries from insulin resistant obese Zucker rats

2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
DOLORES PRIETO ◽  
ANA SÁNCHEZ PINA ◽  
CRISTINA CONTRERAS ◽  
NURIA VILLALBA ◽  
MARTINEZ PILAR
2010 ◽  
Vol 213 (2) ◽  
pp. 392-399 ◽  
Author(s):  
Ana Sánchez ◽  
Cristina Contreras ◽  
Pilar Martínez ◽  
Nuria Villalba ◽  
Sara Benedito ◽  
...  

2011 ◽  
Vol 217 (2) ◽  
pp. 331-339 ◽  
Author(s):  
Cristina Contreras ◽  
Ana Sánchez ◽  
Albino García-Sacristán ◽  
M. Carmen Martínez ◽  
Ramaroson Andriantsitohaina ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e36027 ◽  
Author(s):  
Ana Sánchez ◽  
Cristina Contreras ◽  
María Pilar Martínez ◽  
Belén Climent ◽  
Sara Benedito ◽  
...  

2014 ◽  
Vol 2 (1) ◽  
Author(s):  
Priyanka Prathipati ◽  
Syed Quadri ◽  
Debra Jackson ◽  
Keith Jackson

2000 ◽  
Vol 278 (2) ◽  
pp. R453-R459 ◽  
Author(s):  
J. Anthony Peth ◽  
Tyson R. Kinnick ◽  
Erik B. Youngblood ◽  
Hans J. Tritschler ◽  
Erik J. Henriksen

The purpose of this study was to assess the individual and interactive effects of the antioxidant α-lipoic acid (LPA) and the n-6 essential fatty acid γ-linolenic acid (GLA) on insulin action in insulin-resistant obese Zucker rats. LPA, GLA, and a unique conjugate consisting of equimolar parts of LPA and GLA (LPA-GLA) were administered for 14 days at 10, 30, or 50 mg ⋅ kg body wt− 1 ⋅ day− 1. Whereas LPA was without effect at 10 mg/kg, at 30 and 50 mg/kg it elicited 23% reductions ( P < 0.05) in the glucose-insulin index (the product of glucose and insulin areas under the curve during an oral glucose tolerance test and an index of peripheral insulin action) that were associated with significant increases in insulin-mediated (2 mU/ml) glucose transport activity in isolated epitrochlearis (63–65%) and soleus (33–41%) muscles. GLA at 10 and 30 mg/kg caused 21–25% reductions in the glucose-insulin index and 23–35% improvements in insulin-mediated glucose transport in epitrochlearis muscle. The beneficial effects of GLA disappeared at 50 mg/kg. At 10 and 30 mg/kg, the LPA-GLA conjugate elicited 29 and 38% reductions in the glucose-insulin index. These LPA-GLA-induced improvements in whole body insulin action were accompanied by 28–63 and 38–57% increases in insulin-mediated glucose transport in epitrochlearis and soleus muscles and resulted from the additive effects of LPA and GLA. At 50 mg/kg, the metabolic improvements due to LPA-GLA were substantially reduced. In summary, these results indicate that the conjugate of the antioxidant LPA and the n-6 essential fatty acid GLA elicits significant dose-dependent improvements in whole body and skeletal muscle insulin action on glucose disposal in insulin-resistant obese Zucker rats. Moreover, these actions of LPA-GLA are due to the additive effects of its individual components.


2014 ◽  
Vol 11 (6) ◽  
pp. 1463-1474 ◽  
Author(s):  
Ana Sánchez ◽  
Cristina Contreras ◽  
Pilar Martínez ◽  
Mercedes Muñoz ◽  
Ana Cristina Martínez ◽  
...  

Diabetologia ◽  
2004 ◽  
Vol 47 (3) ◽  
pp. 412-419 ◽  
Author(s):  
G. D. Wadley ◽  
C. R. Bruce ◽  
N. Konstantopoulos ◽  
S. L. Macaulay ◽  
K. F. Howlett ◽  
...  

2006 ◽  
Vol 290 (2) ◽  
pp. E251-E257 ◽  
Author(s):  
Sarah J. Lessard ◽  
Zhi-Ping Chen ◽  
Matthew J. Watt ◽  
Michael Hashem ◽  
Julianne J. Reid ◽  
...  

Rosiglitazone (RSG) is an insulin-sensitizing thiazolidinedione (TZD) that exerts peroxisome proliferator-activated receptor-γ (PPARγ)-dependent and -independent effects. We tested the hypothesis that part of the insulin-sensitizing effect of RSG is mediated through the action of AMP-activated protein kinase (AMPK). First, we determined the effect of acute (30–60 min) incubation of L6 myotubes with RSG on AMPK regulation and palmitate oxidation. Compared with control (DMSO), 200 μM RSG increased ( P < 0.05) AMPKα1 activity and phosphorylation of AMPK (Thr172). In addition, acetyl-CoA carboxylase (Ser218) phosphorylation and palmitate oxidation were increased ( P < 0.05) in these cells. To investigate the effects of chronic RSG treatment on AMPK regulation in skeletal muscle in vivo, obese Zucker rats were randomly allocated into two experimental groups: control and RSG. Lean Zucker rats were treated with vehicle and acted as a control group for obese Zucker rats. Rats were dosed daily for 6 wk with either vehicle (0.5% carboxymethylcellulose, 100 μl/100 g body mass), or 3 mg/kg RSG. AMPKα1 activity was similar in muscle from lean and obese animals and was unaffected by RSG treatment. AMPKα2 activity was ∼25% lower in obese vs. lean animals ( P < 0.05) but was normalized to control values after RSG treatment. ACC phosphorylation was decreased with obesity ( P < 0.05) but restored to the level of lean controls with RSG treatment. Our data demonstrate that RSG restores AMPK signaling in skeletal muscle of insulin-resistant obese Zucker rats.


Sign in / Sign up

Export Citation Format

Share Document