scholarly journals Rosiglitazone improves characteristics of Non‐Alcoholic Steatohepatitis (NASH) in a mouse model of metabolic syndrome

2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Anisha A. Gupte ◽  
Joey Z. Liu ◽  
Laurie J. Minze ◽  
Yuelan Ren ◽  
Jessica R. Wiles ◽  
...  
2012 ◽  
Vol 44 (9) ◽  
pp. 767-774 ◽  
Author(s):  
Makoto Fujimoto ◽  
Koichi Tsuneyama ◽  
Takako Fujimoto ◽  
Carlo Selmi ◽  
M. Eric Gershwin ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 459-P
Author(s):  
LEIGH GOEDEKE ◽  
NOEMI ROTLLAN ◽  
KESHIA TOUSSAINT ◽  
ALI NASIRI ◽  
XINBO ZHANG ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sophie Jacques ◽  
Arash Arjomand ◽  
Hélène Perée ◽  
Patrick Collins ◽  
Alice Mayer ◽  
...  

AbstractNon-alcoholic fatty liver disease (NAFLD) is the most common chronic hepatic pathology in Western countries. It encompasses a spectrum of conditions ranging from simple steatosis to more severe and progressive non-alcoholic steatohepatitis (NASH) that can lead to hepatocellular carcinoma (HCC). Obesity and related metabolic syndrome are important risk factors for the development of NAFLD, NASH and HCC. DUSP3 is a small dual-specificity protein phosphatase with a poorly known physiological function. We investigated its role in metabolic syndrome manifestations and in HCC using a mouse knockout (KO) model. While aging, DUSP3-KO mice became obese, exhibited insulin resistance, NAFLD and associated liver damage. These phenotypes were exacerbated under high fat diet (HFD). In addition, DEN administration combined to HFD led to rapid HCC development in DUSP3-KO compared to wild type (WT) mice. DUSP3-KO mice had more serum triglycerides, cholesterol, AST and ALT compared to control WT mice under both regular chow diet (CD) and HFD. The level of fasting insulin was higher compared to WT mice, though, fasting glucose as well as glucose tolerance were normal. At the molecular level, HFD led to decreased expression of DUSP3 in WT mice. DUSP3 deletion was associated with increased and consistent phosphorylation of the insulin receptor (IR) and with higher activation of the downstream signaling pathway. In conclusion, our results support a new role for DUSP3 in obesity, insulin resistance, NAFLD and liver damage.


2021 ◽  
Author(s):  
Nikolaos Perakakis ◽  
Konstantinos Stefanakis ◽  
Michael Feigh ◽  
Sanne Skovgard Veidal ◽  
Christos S. Mantzoros

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1515
Author(s):  
Keiichiro Okuda ◽  
Atsushi Umemura ◽  
Shiori Umemura ◽  
Seita Kataoka ◽  
Hiroyoshi Taketani ◽  
...  

Non-alcoholic steatohepatitis (NASH) has become a serious public health problem associated with metabolic syndrome. The mechanisms by which NASH induces hepatocellular carcinoma (HCC) remain unknown. There are no approved drugs for treating NASH or preventing NASH-induced HCC. We used a genetic mouse model in which HCC was induced via high-fat diet feeding. This mouse model strongly resembles human NASH-induced HCC. The natural product honokiol (HNK) was tested for its preventative effects against NASH progression to HCC. Then, to clarify the mechanisms underlying HCC development, human HCC cells were treated with HNK. Human clinical specimens were also analyzed to explore this study’s clinical relevance. We found that epidermal growth factor receptor (EGFR) signaling was hyperactivated in the livers of mice with NASH and human HCC specimens. Inhibition of EGFR signaling by HNK drastically attenuated HCC development in the mouse model. Mechanistically, HNK accelerated the nuclear translocation of glucocorticoid receptor (GR) and promoted mitogen-inducible gene 6 (MIG6)/ERBB receptor feedback inhibitor 1 (ERRFI1) expression, leading to EGFR degradation and thereby resulting in robust tumor suppression. In human samples, EGFR-positive HCC tissues and their corresponding non-tumor tissues exhibited decreased ERRFI1 mRNA expression. Additionally, GR-positive non-tumor liver tissues displayed lower EGFR expression. Livers from patients with advanced NASH exhibited decreased ERRFI1 expression. EGFR degradation or inactivation represents a novel approach for NASH–HCC treatment and prevention, and the GR–MIG6 axis is a newly defined target that can be activated by HNK and related compounds.


Sign in / Sign up

Export Citation Format

Share Document