scholarly journals Skeletal muscle protein synthesis and the abundance of the mRNA translation initiation repressor PDCD4 are inversely regulated by feed deprivation and refeeding in rats

2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
Olasunkanmi Adegoke ◽  
Sana Zargar ◽  
Helena Samimi Seisan ◽  
Senthure Jeganathan ◽  
Dhanshri Kakade ◽  
...  
2002 ◽  
Vol 282 (2) ◽  
pp. E336-E347 ◽  
Author(s):  
Charles H. Lang ◽  
Robert A. Frost ◽  
Angus C. Nairn ◽  
David A. MacLean ◽  
Thomas C. Vary

This study examined potential mechanisms contributing to the inhibition of protein synthesis in skeletal muscle and heart after administration of tumor necrosis factor (TNF)-α. Rats had vascular catheters implanted, and TNF-α was infused continuously for 24 h. TNF-α decreased in vivo-determined rates of global protein synthesis in gastrocnemius (39%) and heart (25%). The TNF-α-induced decrease in protein synthesis in the gastrocnemius involved a reduction in the synthesis of both myofibrillar and sarcoplasmic proteins. To identify potential mechanisms responsible for regulating mRNA translation, we examined several eukaryotic initiation factors (eIFs) and elongation factors (eEFs). TNF-α decreased the activity of eIF-2B in muscle (39%) but not in heart. This diminished activity was not caused by a reduction in the content of eIF-2Bε or the content and phosphorylation state of eIF-2α. Skeletal muscle and heart from TNF-α-treated rats demonstrated 1) an increased binding of the translation repressor 4E-binding protein-1 (4E-BP1) with eIF-4E, 2) a decreased amount of eIF-4E associated with eIF-4G, and 3) a decreased content of the hyperphosphorylated γ-form of 4E-BP1. In contrast, the infusion of TNF-α did not alter the content of eEF-1α or eEF-2, or the phosphorylation state of eEF-2. In summary, these data suggest that TNF-α impairs skeletal muscle and heart protein synthesis, at least in part, by decreasing mRNA translational efficiency resulting from an impairment in translation initiation associated with alterations in eIF-4E availability.


2000 ◽  
Vol 279 (6) ◽  
pp. E1226-E1234 ◽  
Author(s):  
Teresa A. Davis ◽  
Hanh V. Nguyen ◽  
Agus Suryawan ◽  
Jill A. Bush ◽  
Leonard S. Jefferson ◽  
...  

The rapid gain in skeletal muscle mass in the neonate is associated with a marked elevation in skeletal muscle protein synthesis in response to feeding. The feeding-induced response decreases with development. To determine whether the response to feeding is regulated at the level of translation initiation, the expression, phosphorylation, and function of a number of eukaryotic initiation factors (eIF) were examined. Pigs at 7 and 26 days of age were either fasted overnight or fed porcine milk after an overnight fast. In muscle of 7-day-old pigs, the hyperphosphorylated form of the eIF4E repressor protein, 4E-binding protein 1 (4E-BP1), was undetectable in the fasting state but rose to 60% of total 4E-BP1 after feeding; eIF4E phosphorylation was unaffected by feeding status. The amount of eIF4E in the inactive 4E-BP1 · eIF4E complex was reduced by 80%, and the amount of eIF4E in the active eIF4E · eIF4G complex was increased 14-fold in muscle of 7-day-old pigs after feeding. The amount of 70-kDa ribosomal protein S6 (p70S6) kinase in the hyperphosphorylated form rose 2.5-fold in muscle of 7-day-old pigs after feeding. Each of these feeding-induced responses was blunted in muscle of 26-day-old pigs. eIF2B activity in muscle was unaffected by feeding status but decreased with development. Feeding produced similar changes in eIF characteristics in liver and muscle; however, the developmental changes in liver were not as apparent as in skeletal muscle. Thus the results demonstrate that the developmental change in the acute stimulation of skeletal muscle protein synthesis by feeding is regulated by the availability of eIF4E for 48S ribosomal complex formation. The results further suggest that the overall developmental decline in skeletal muscle protein synthesis involves regulation by eIF2B.


2006 ◽  
Vol 291 (4) ◽  
pp. E849-E859 ◽  
Author(s):  
Agus Suryawan ◽  
Jeffery Escobar ◽  
Jason W. Frank ◽  
Hanh V. Nguyen ◽  
Teresa A. Davis

The rapid growth of neonates is driven by high rates of skeletal muscle protein synthesis. This high rate of protein synthesis, which is induced by feeding, declines with development. Overnight-fasted 7- and 26-day-old pigs either remained fasted or were refed, and the abundance and phosphorylation of growth factor- and nutrient-induced signaling components that regulate mRNA translation initiation were measured in skeletal muscle and liver. In muscle, but not liver, the activation of inhibitors of protein synthesis, phosphatase and tensin homolog deleted on chromosome 10, protein phosphatase 2A, and tuberous sclerosis complex 1/2 increased with age. Serine/threonine phosphorylation of the insulin receptor and insulin receptor substrate-1, which downregulates insulin signaling, and the activation of AMP-activated protein kinase, an inhibitor of protein synthesis, were unaffected by age and feeding in muscle and liver. Activation of positive regulators of protein synthesis, mammalian target of rapamycin (mTOR), ribosomal protein S6 kinase 1 (S6K1), and eIF4E-binding protein-1 (4E-BP1) decreased with age in muscle but not liver. Feeding enhanced mTOR, S6K1, and 4E-BP1 activation in muscle, and this response decreased with age. In liver, activation of S6K1 and 4E-BP1, but not mTOR, was increased by feeding but was unaffected by age. Raptor abundance and the association between raptor and mTOR were greater in 7- than in 26-day-old pigs. The results suggest that the developmental decline in skeletal muscle protein synthesis is due in part to developmental regulation of the activation of growth factor and nutrient-signaling components.


2008 ◽  
Vol 295 (1) ◽  
pp. E187-E194 ◽  
Author(s):  
Fiona A. Wilson ◽  
Renán A. Orellana ◽  
Agus Suryawan ◽  
Hanh V. Nguyen ◽  
Asumthia S. Jeyapalan ◽  
...  

Chronic treatment of growing pigs with porcine somatotropin (pST) promotes protein synthesis and doubles postprandial levels of insulin, a hormone that stimulates translation initiation. This study aimed to determine whether the pST-induced increase in skeletal muscle protein synthesis was mediated through an insulin-induced stimulation of translation initiation. After 7–10 days of pST (150 μg·kg−1·day−1) or control saline treatment, pancreatic glucose-amino acid clamps were performed in overnight-fasted pigs to reproduce 1) fasted (5 μU/ml), 2) fed control (25 μU/ml), and 3) fed pST-treated (50 μU/ml) insulin levels while glucose and amino acids were maintained at baseline fasting levels. Fractional protein synthesis rates and indexes of translation initiation were examined in skeletal muscle. Effectiveness of pST treatment was confirmed by reduced urea nitrogen and elevated insulin-like growth factor I levels in plasma. Skeletal muscle protein synthesis was independently increased by both insulin and pST. Insulin increased the phosphorylation of protein kinase B and the downstream effectors of the mammalian target of rapamycin, ribosomal protein S6 kinase, and eukaryotic initiation factor (eIF)4E-binding protein-1 (4E-BP1). Furthermore, insulin reduced inactive 4E-BP1·eIF4E complex association and increased active eIF4E·eIF4G complex formation, indicating enhanced eIF4F complex assembly. However, pST treatment did not alter translation initiation factor activation. We conclude that the pST-induced stimulation of skeletal muscle protein synthesis in growing pigs is independent of the insulin-associated activation of translation initiation.


1997 ◽  
Vol 82 (3) ◽  
pp. 807-810 ◽  
Author(s):  
Arny A. Ferrando ◽  
Kevin D. Tipton ◽  
Marcas M. Bamman ◽  
Robert R. Wolfe

Ferrando, Arny A., Kevin D. Tipton, Marcas M. Bamman, and Robert R. Wolfe. Resistance exercise maintains skeletal muscle protein synthesis during bed rest. J. Appl. Physiol. 82(3): 807–810, 1997.—Spaceflight results in a loss of lean body mass and muscular strength. A ground-based model for microgravity, bed rest, results in a loss of lean body mass due to a decrease in muscle protein synthesis (MPS). Resistance training is suggested as a proposed countermeasure for spaceflight-induced atrophy because it is known to increase both MPS and skeletal muscle strength. We therefore hypothesized that scheduled resistance training throughout bed rest would ameliorate the decrease in MPS. Two groups of healthy volunteers were studied during 14 days of simulated microgravity. One group adhered to strict bed rest (BR; n = 5), whereas a second group engaged in leg resistance exercise every other day throughout bed rest (BREx; n = 6). MPS was determined directly by the incorporation of infusedl-[ ring-13C6]phenylalanine into vastus lateralis protein. After 14 days of bed rest, MPS in the BREx group did not change and was significantly greater than in the BR group. Thus moderate-resistance exercise can counteract the decrease in MPS during bed rest.


1991 ◽  
Vol 260 (3) ◽  
pp. E499-E504 ◽  
Author(s):  
D. A. Fryburg ◽  
R. A. Gelfand ◽  
E. J. Barrett

The short-term effects of growth hormone (GH) on skeletal muscle protein synthesis and degradation in normal humans are unknown. We studied seven postabsorptive healthy men (age 18-23 yr) who received GH (0.014 micrograms.kg-1.min-1) via intrabrachial artery infusion for 6 h. The effects of GH on forearm amino acid and glucose balances and on forearm amino acid kinetics [( 3H]Phe and [14C]Leu) were determined after 3 and 6 h of the GH infusion. Forearm deep vein GH rose to 35 +/- 6 ng/ml in response to GH, whereas systemic levels of GH, insulin, and insulin-like growth factor I (IGF-I) were unchanged. Forearm glucose uptake did not change during the study. After 6 h, GH suppressed forearm net release (3 vs. 6 h) of Phe (P less than 0.05), Leu (P less than 0.01), total branched-chain amino acids (P less than 0.025), and essential neutral amino acids (0.05 less than P less than 0.1). The effect on the net balance of Phe and Leu was due to an increase in the tissue uptake for Phe (71%, P less than 0.05) and Leu (37%, P less than 0.005) in the absence of any significant change in release of Phe or Leu from tissue. In the absence of any change in systemic GH, IGF-I, or insulin, these findings suggest that locally infused GH stimulates skeletal muscle protein synthesis. These findings have important physiological implications for both the role of daily GH pulses and the mechanisms through which GH can promote protein anabolism.


Sign in / Sign up

Export Citation Format

Share Document