phosphorylation state
Recently Published Documents


TOTAL DOCUMENTS

519
(FIVE YEARS 49)

H-INDEX

65
(FIVE YEARS 3)

2021 ◽  
Vol 17 (3) ◽  
pp. 144-152
Author(s):  
Shelareen E Sunn ◽  
Donkupar Syiem ◽  
Careen Liza Pakyntein

The present study is aimed at investigating the modulation of serine/threonine phosphorylation of IRS1 and the gene expression oftotal IRS1 and adipokines including TNF-α, IL-6 and adiponectin by the plant Potentilla fulgens and its phytochemical constituents catechin and (-)-epicatechin. Alloxan-induced diabetic mice with a two-to three-fold increase in their blood glucose levels were taken for the study. The level of protein expression of total (tIRS1), tyrosine (pIRS1), and serine phosphorylated IRS1 (pIRS1 ser307) was analysed by western blot, and the gene expression level of tIRS1, IL-6, TNF-α, and adiponectin was analysed by real-time PCR. Since evidences strongly suggest that adiponectin, TNF-α, and IL-6 are implicated in insulin resistance and type 2 diabetes, therefore these three adipokines have been targeted in our study with an aim to investigate the anti-inflammatory and antidiabetic effects of our plant Potentillafulgens(PF) andits phytochemicals. The results strongly demonstrates the capability of PF and its phytochemicals to modulate the ser/thr phosphorylation state of IRS1 by downregulating the serine 307 phosphorylation while simultaneously upregulating the tyrosine phosphorylation of IRS1. The results also indicate the ability of the same to alleviate inflammation in alloxan induced diabetes by modulating the expression of the insulin sensitizing hormone adiponectin and the pro-inflammatory cytokines L-6 and TNF-α.


2021 ◽  
Author(s):  
Jasmine Alexander-Floyd ◽  
Antonia R. Bass ◽  
Erin M. Harberts ◽  
Daniel Grubaugh ◽  
Joseph D. Buxbaum ◽  
...  

Detection of Gram-negative bacterial lipid A by the extracellular sensor, MD-2/TLR4 or the intracellular inflammasome sensors, CASP4 and CASP5, induces robust inflammatory responses. The chemical structure of lipid A, specifically the phosphorylation and acylation state, varies across and within bacterial species, potentially allowing pathogens to evade or suppress host immunity. Currently, it is not clear how distinct alterations in the phosphorylation or acylation state of lipid A affect both human TLR4 and CASP4/5 activation. Using a panel of engineered lipooligosaccharides (LOS) derived from Yersinia pestis with defined lipid A structures that vary in their acylation or phosphorylation state, we identified that differences in phosphorylation state did not affect TLR4 or CASP4/5 activation. However, the acylation state differentially impacted TLR4 and CASP4/5 activation. Specifically, all of the examined tetra-, penta-, and hexa-acylated LOS variants activated CASP4/5-dependent responses, whereas TLR4 responded to penta- and hexa-acylated LOS but did not respond to tetra-acylated LOS or penta-acylated LOS lacking the secondary acyl chain at the 3' position. As expected, lipid A alone was sufficient for TLR4 activation; however, human macrophages required both lipid A and the core oligosaccharide to mount a robust CASP4/5 inflammasome response. Our findings show that human TLR4 and CASP4/5 detect both shared and non-overlapping LOS/lipid A structures, which enables the innate immune system to recognize a wider range of bacterial LOS/lipid A, thereby constraining the ability of pathogens to evade innate immune detection.


2021 ◽  
Author(s):  
Megan E Garber ◽  
Rodrigo Fregoso ◽  
Julie Lake ◽  
Anne Kakouridis ◽  
Aindrila Mukhopadhyay

In this report, we systematically characterize 32 response regulators (RRs) from a metal tolerant groundwater isolate, Pseudomonas stutzeri RCH2 to assess the impact of host-derived post-translational phosphorylation. As observed by distinct shifted bands in a phos-tag gel, 12 of the 24 detected RRs show homogenous mixtures of phosphorylated proteins or heterogenous mixtures of unphosphorylated and phosphorylated proteins. By evaluating the phosphorylation state of CzcR and CopR II under varying assay parameters, we found that changes to pH and exogenous addition of phospho-donors (e.g. acetyl phosphate) have little to no effect on phosphorylation state. By applying protein production conditions that decrease the pool of intracellular acetyl-phosphate in E. coli, we found a reduction in the phosphorylated population of CopR II when magnesium was added to the media, but observed no change in phosphorylated population when CopR II is expressed in E. coli BL21 (DE3) ∆pta, a mutant with a metabolic disruption to the acetyl-phosphate pathway. Therefore, the specific mechanism of post-translational phosphorylation of RRs in E. coli remains obscure. These findings show the importance of characterizing the phosphorylations state of proteins when heterologously expressed, since their biochemical and physiological properties are dependent on post-translational modification.


2021 ◽  
Vol 22 (23) ◽  
pp. 12817
Author(s):  
Thamer A. Alsufayan ◽  
Evan J. Myers ◽  
Bianca N. Quade ◽  
Clayton T. Brady ◽  
Aniko Marshall ◽  
...  

In most cell types and heterologous expression systems, the electrogenic sodium-bicarbonate cotransporter NBCe1 operates with a 1Na+–2HCO3− stoichiometry that, given typical transmembrane electrochemical gradients, promotes Na+ and HCO3− influx. However, NBCe1 in the kidney mediates HCO3− efflux (HCO3− reabsorption), a direction that has been predicted to be favored only if NBCe1 operates with a 1:3 stoichiometry. The phosphorylation state of Ser982 in the cytosolic carboxy-terminal domain of NBCe1 has been reported to be a key determinant of the transporter stoichiometry, with non-phosphorylated Ser982 favoring a 1:3 stoichiometry. Conversely, phosphoproteomic data from renal cortical preparations have revealed the presence of NBCe1 peptides including phosphoserine982 (pSer982) and/or pSer985 although it was not known what proportion of NBCe1 molecules were phosphorylated. In the present study, we report the generation, characterization, and application of a novel phosphospecific antibody raised against NBCe1/pSer982 and show that, contrary to expectations, Ser982 is more prevalently phosphorylated in murine kidneys (in which NBCe1 mediates HCO3− efflux) than in murine colons (in which NBCe1 mediates HCO3− influx). Using phosphomimetic mutants of murine NBCe1 expressed in Xenopus oocytes, we found no evidence that the phosphorylation state of Ser982 or Ser985 alone influences the transport stoichiometry or conductance. Furthermore, we found that the phosphorylation of NBCe1/Ser982 is enhanced in murine kidneys following a 24 h induction of metabolic acidosis. We conclude that the phosphorylation status of Ser982 is not a key determinant of NBCe1 stoichiometry but correlates with presumed NBCe1 activity.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2781
Author(s):  
Tatiana Brustovetsky ◽  
Rajesh Khanna ◽  
Nickolay Brustovetsky

Regulation of mitochondrial morphology and motility is critical for neurons, but the exact mechanisms are unclear. Here, we demonstrate that these mechanisms may involve collapsin response mediator protein 2 (CRMP2). CRMP2 is attached to neuronal mitochondria and binds to dynamin-related protein 1 (Drp1), Miro 2, and Kinesin 1 light chain (KLC1). Treating neurons with okadaic acid (OA), an inhibitor of phosphatases PP1 and PP2A, resulted in increased CRMP2 phosphorylation at Thr509/514, Ser522, and Thr555, and augmented Drp1 phosphorylation at Ser616. The CRMP2-binding small molecule (S)-lacosamide ((S)-LCM) prevented an OA-induced increase in CRMP2 phosphorylation at Thr509/514 and Ser522 but not at Thr555, and also failed to alleviate Drp1 phosphorylation. The increased CRMP2 phosphorylation correlated with decreased CRMP2 binding to Drp1, Miro 2, and KLC1. (S)-LCM rescued CRMP2 binding to Drp1 and Miro 2 but not to KLC1. In parallel with CRMP2 hyperphosphorylation, OA increased mitochondrial fission and suppressed mitochondrial traffic. (S)-LCM prevented OA-induced alterations in mitochondrial morphology and motility. Deletion of CRMP2 with a small interfering RNA (siRNA) resulted in increased mitochondrial fission and diminished mitochondrial traffic. Overall, our data suggest that the CRMP2 expression level and phosphorylation state are involved in regulating mitochondrial morphology and motility in neurons.


2021 ◽  
Vol 22 (17) ◽  
pp. 9483
Author(s):  
Riccardo Milanesi ◽  
Farida Tripodi ◽  
Jacopo Vertemara ◽  
Renata Tisi ◽  
Paola Coccetti

To achieve growth, microbial organisms must cope with stresses and adapt to the environment, exploiting the available nutrients with the highest efficiency. In Saccharomyces cerevisiae, Ras/PKA and Snf1/AMPK pathways regulate cellular metabolism according to the supply of glucose, alternatively supporting fermentation or mitochondrial respiration. Many reports have highlighted crosstalk between these two pathways, even without providing a comprehensive mechanism of regulation. Here, we show that glucose-dependent inactivation of Snf1/AMPK is independent from the Ras/PKA pathway. Decoupling glucose uptake rate from glucose concentration, we highlight a strong coordination between glycolytic metabolism and Snf1/AMPK, with an inverse correlation between Snf1/AMPK phosphorylation state and glucose uptake rate, regardless of glucose concentration in the medium. Despite fructose-1,6-bisphosphate (F1,6BP) being proposed as a glycolytic flux sensor, we demonstrate that glucose-6-phosphate (G6P), and not F1,6BP, is involved in the control of Snf1/AMPK phosphorylation state. Altogether, this study supports a model by which Snf1/AMPK senses glucose flux independently from PKA activity, and thanks to conversion of glucose into G6P.


Planta ◽  
2021 ◽  
Vol 254 (3) ◽  
Author(s):  
Jacinto Gandullo ◽  
Rosario Álvarez ◽  
Ana-Belén Feria ◽  
José-Antonio Monreal ◽  
Isabel Díaz ◽  
...  

Abstract Main conclusion A synthetic peptide from the C-terminal end of C4-phosphoenolpyruvate carboxylase is implicated in the proteolysis of the enzyme, and Glc-6P or phosphorylation of the enzyme modulate this effect. Abstract Phosphoenolpyruvate carboxylase (PEPC) is a cytosolic, homotetrameric enzyme that performs a variety of functions in plants. Among them, it is primarily responsible for CO2 fixation in the C4 photosynthesis pathway (C4-PEPC). Here we show that proteolysis of C4-PEPC by cathepsin proteases present in a semi-purified PEPC fraction was enhanced by the presence of a synthetic peptide containing the last 19 amino acids from the C-terminal end of the PEPC subunit (pC19). Threonine (Thr)944 and Thr948 in the peptide are important requirements for the pC19 effect. C4-PEPC proteolysis in the presence of pC19 was prevented by the PEPC allosteric effector glucose 6-phosphate (Glc-6P) and by phosphorylation of the enzyme. The role of these elements in the regulation of PEPC proteolysis is discussed in relation to the physiological context.


2021 ◽  
Vol 118 (31) ◽  
pp. e2100032118
Author(s):  
Munetaka Nomoto ◽  
Glenn T. Konopaske ◽  
Naoya Yamashita ◽  
Reina Aoki ◽  
Aoi Jitsuki-Takahashi ◽  
...  

There are no validated biomarkers for schizophrenia (SCZ), a disorder linked to neural network dysfunction. We demonstrate that collapsin response mediator protein-2 (CRMP2), a master regulator of cytoskeleton and, hence, neural circuitry, may form the basis for a biomarker because its activity is uniquely imbalanced in SCZ patients. CRMP2’s activity depends upon its phosphorylation state. While an equilibrium between inactive (phosphorylated) and active (nonphosphorylated) CRMP2 is present in unaffected individuals, we show that SCZ patients are characterized by excess active CRMP2. We examined CRMP2 levels first in postmortem brains (correlated with neuronal morphometrics) and then, because CRMP2 is expressed in lymphocytes as well, in the peripheral blood of SCZ patients versus age-matched unaffected controls. In the brains and, more starkly, in the lymphocytes of SCZ patients <40 y old, we observed that nonphosphorylated CRMP2 was higher than in controls, while phosphorylated CRMP2 remained unchanged from control. In the brain, these changes were associated with dendritic structural abnormalities. The abundance of active CRMP2 with insufficient opposing inactive p-CRMP2 yielded a unique lowering of the p-CRMP2:CRMP2 ratio in SCZ patients, implying a disruption in the normal equilibrium between active and inactive CRMP2. These clinical data suggest that measuring CRMP2 and p-CRMP2 in peripheral blood might reflect intracerebral processes and suggest a rapid, minimally invasive, sensitive, and specific adjunctive diagnostic aid for early SCZ: increased CRMP2 or a decreased p-CRMP2:CRMP2 ratio may help cinch the diagnosis in a newly presenting young patient suspected of SCZ (versus such mimics as mania in bipolar disorder, where the ratio is high).


2021 ◽  
Vol 153 (7) ◽  
Author(s):  
Ben Short

JGP study shows that the phosphorylation state of cMyBPC modulates the ability of omecamtiv mecarbil to enhance myocardial force generation.


2021 ◽  
Author(s):  
Abel Sousa ◽  
Aurelien Dugourd ◽  
Danish Memon ◽  
Borgthor Petursson ◽  
Evangelia Petsalaki ◽  
...  

Genetic alterations in cancer cells trigger oncogenic transformation, a process largely mediated by the dysregulation of kinase and transcription factor (TF) activities. While the mutational profiles of thousands of tumours has been extensively characterized, the measurements of protein activities has been technically limited until recently. We compiled public data of matched genomics and (phospho)proteomics measurements for 1,110 tumours and 77 cell lines that we used to estimate activity changes in 218 kinases and 292 TFs. Kinase activities are, on average, not strongly determined by protein abundance but rather by their phosphorylation state while the reverse is more common for TFs. Co-regulation of kinase and TF activities reflects previously known regulatory relationships and allows us to dissect genetic drivers of signalling changes in cancer. Loss-of-function mutation is not often associated with dysregulation of downstream targets, suggesting frequent compensatory mechanisms. Finally, we identified the activities most differentially regulated in cancer subtypes and showed how these can be linked to differences in patient survival. Our results provide broad insights into dysregulation of protein activities in cancer and their contribution to disease severity.


Sign in / Sign up

Export Citation Format

Share Document