Impaired muscular force production in a canine model of muscular dystrophin deficiency

2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Hsiao Tung Yang ◽  
Jin-Hong Shin ◽  
Xiufang Pan ◽  
Ronald L Terjung ◽  
Dongsheng Duan
PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e44438 ◽  
Author(s):  
Hsiao T. Yang ◽  
Jin-Hong Shin ◽  
Chady H. Hakim ◽  
Xiufang Pan ◽  
Ronald L. Terjung ◽  
...  

2019 ◽  
Vol 3 (5) ◽  
pp. 42-49
Author(s):  
Pedro Vieira Sarmet Moreira ◽  
◽  
Kristy Alejandra Godoy Jaimes ◽  
Luciano Luporini Menegaldo ◽  
◽  
...  

2014 ◽  
Vol 10 (8) ◽  
pp. 20140434 ◽  
Author(s):  
Greg Byrnes ◽  
Bruce C. Jayne

On the steep surfaces that are common in arboreal environments, many types of animals without claws or adhesive structures must use muscular force to generate sufficient normal force to prevent slipping and climb successfully. Unlike many limbed arboreal animals that have discrete gripping regions on the feet, the elongate bodies of snakes allow for considerable modulation of both the size and orientation of the gripping region. We quantified the gripping forces of snakes climbing a vertical cylinder to determine the extent to which their force production favoured economy or safety. Our sample included four boid species and one colubrid. Nearly all of the gripping forces that we observed for each snake exceeded our estimate of the minimum required, and snakes commonly produced more than three times the normal force required to support their body weight. This suggests that a large safety factor to avoid slipping and falling is more important than locomotor economy.


2008 ◽  
Vol 41 (11) ◽  
pp. 2422-2429 ◽  
Author(s):  
Natalia Kosterina ◽  
Håkan Westerblad ◽  
Jan Lännergren ◽  
Anders Eriksson

2019 ◽  
Author(s):  
Arnaud Ferry ◽  
Julien Messéant ◽  
Ara Parlakian ◽  
Mégane Lemaitre ◽  
Pauline Roy ◽  
...  

AbstractDuchenne muscular dystrophy (DMD) is a severe neuromuscular disease, caused by dystrophin deficiency. Desmin is like dystrophin associated to costameric structures bridging sarcomeres to extracellular matrix that are involved in force transmission and skeletal muscle integrity. In the present study, we wanted to gain further insight into the roles of desmin which expression is increased in the muscle from the mouse Mdx DMD model. We show that a deletion of the desmin gene (Des) in Mdx mice (DKO, Mdx:desmin-/-) induces a marked worsening of the weakness (reduced maximal force production) as compared to Mdx mice. Fragility (higher susceptibility to contraction-induced injury) was also aggravated and fatigue resistance was reduced in DKO mice. Moreover, in contrast to Mdx mice, the DKO mice did not undergo a muscle hypertrophy because of smaller and less numerous fibers, with reduced percentage of centronucleated fibres. Interestingly, Desmin cDNA transfer with adeno-associated virus in 1-month-old DKO mice and newborn Mdx mice improved muscle weakness. Overall, desmin plays important and beneficial roles on muscle performance, fragility and remodelling in dystrophic Mdx mice.


2003 ◽  
Vol 33 (1) ◽  
pp. 47-58 ◽  
Author(s):  
David Tod ◽  
Fiona Iredale ◽  
Nicholas Gill

2016 ◽  
Vol 45 ◽  
pp. 170-174 ◽  
Author(s):  
David J. Arpin ◽  
Brenda L. Davies ◽  
Max J. Kurz

Author(s):  
Abbe H. Crawford ◽  
John C.W. Hildyard ◽  
Sophie A.M. Rushing ◽  
Dominic J. Wells ◽  
Maria Diez-Leon ◽  
...  

Duchenne muscular dystrophy (DMD), a fatal musculoskeletal disorder, is associated with neurodevelopmental disorders and cognitive impairment caused by brain dystrophin deficiency. Dog models of DMD represent key translational tools to study dystrophin biology and to develop novel therapeutics. However, characterization of dystrophin expression and function in the canine brain is lacking. We studied the DE50-MD canine model of DMD that has a missense mutation in the donor splice site of exon 50. Using a battery of cognitive tests, we detected a neurocognitive phenotype in DE50-MD dogs including reduced attention, problem-solving and exploration of novel objects. Through a combination of capillary immunoelectrophoresis, immunolabelling, qPCR and RNAScope in situ hybridization we show that regional dystrophin expression in the adult canine brain reflects that of humans, and that the DE50-MD dog lacks full length dystrophin (Dp427) protein expression but retains expression of the two shorter brain-expressed isoforms, Dp140 and Dp71. Thus, the DE50-MD dog is a translationally-relevant pre-clinical model to study the consequences of Dp427 deficiency in the brain and to develop therapeutic strategies for the neurological sequelae of DMD.


Sign in / Sign up

Export Citation Format

Share Document