scholarly journals Major role of ryanodine type 2 receptors in global and local intracellular calcium release in arterial smooth muscle (1067.7)

2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Mario Kassmann ◽  
Johanna Schleifenbaum ◽  
István Szijártó ◽  
Yoland‐Marie Anistan ◽  
Maik Gollasch
2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Kirill Essin ◽  
Maik Gollasch

Calcium sparks represent local, rapid, and transient calcium release events from a cluster of ryanodine receptors (RyRs) in the sarcoplasmic reticulum. In arterial smooth muscle cells (SMCs), calcium sparks activate calcium-dependent potassium channels causing decrease in the global intracellular[Ca2+]and oppose vasoconstriction. This is in contrast to cardiac and skeletal muscle, where spatial and temporal summation of calcium sparks leads to global increases in intracellular[Ca2+]and myocyte contraction. We summarize the present data on local RyR calcium signaling in arterial SMCs in comparison to striated muscle and muscle-specific differences in coupling between L-type calcium channels and RyRs. Accordingly, arterial SMCCav1.2L-type channels regulate intracellular calcium stores content, which in turn modulates calcium efflux though RyRs. Downregulation of RyR2 up to a certain degree is compensated by increased SR calcium content to normalize calcium sparks. This indirect coupling betweenCav1.2and RyR in arterial SMCs is opposite to striated muscle, where triggering of calcium sparks is controlled by rapid and direct cross-talk betweenCav1.1/Cav1.2L-type channels and RyRs. We discuss the role of RyR isoforms in initiation and formation of calcium sparks in SMCs and their possible molecular binding partners and regulators, which differ compared to striated muscle.


Sign in / Sign up

Export Citation Format

Share Document