scholarly journals Breathing Frequency (fR) Is No Longer Under Chemoreflex Control During REM Sleep

2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Peter Burke ◽  
Roy Kanbar ◽  
Tyler Basting ◽  
Kenneth Viar ◽  
Ruth Stornetta ◽  
...  
2021 ◽  
pp. JN-RM-3067-20
Author(s):  
Adriano BL Tort ◽  
Maximilian Hammer ◽  
Jiaojiao Zhang ◽  
Jurij Brankačk ◽  
Andreas Draguhn

1996 ◽  
Vol 271 (4) ◽  
pp. R1017-R1024 ◽  
Author(s):  
W. Milsom ◽  
M. Castellini ◽  
M. Harris ◽  
J. Castellini ◽  
D. Jones ◽  
...  

This project examined the effects of alterations in respiratory drive on the occurrence of sleep apnea in Northern elephant seal pups (Mirounga angustirostris). Sleep pattern was unaffected by levels of hypoxia (approximately 13%) or hypercapnia (approximately 6%) that doubled respiratory frequency during slow-wave sleep (SWS). During sleep in air, short periods of continuous breathing (mean length = approximately 2.6 min) alternated with periods of apnea (mean length = approximately 6.1 min). Under hypoxic or hypercapnic conditions, the frequency of occurrence of apneas was reduced primarily due to the occurrence of some sleep episodes without periods of apnea. In episodes in which apneas did occur, they began later in the sleep episodes, but their length and the length of the periods of eupnea were not significantly altered. During each period of eupnea, however, the instantaneous respiratory rate and the total number of breaths increased. Breathing during sleep was restricted to SWS, never occurring during rapid eye movement (REM) sleep, regardless of the respired gas mixture. If the levels of hypoxia and hypercapnia were raised further, all episodes of apnea during sleep could be eliminated together with all episodes of REM sleep. One interpretation of the data is that the threshold for altering breathing during eupnea (instantaneous breathing frequency and number of breaths per episode of eupnea) is lower than that for altering the lengths of the periods of apnea and eupnea and that the muscle atonia associated with REM sleep extends to all respiratory muscles.


2000 ◽  
Vol 14 (3) ◽  
pp. 151-158 ◽  
Author(s):  
José Luis Cantero ◽  
Mercedes Atienza

Abstract High-resolution frequency methods were used to describe the spectral and topographic microstructure of human spontaneous alpha activity in the drowsiness (DR) period at sleep onset and during REM sleep. Electroencephalographic (EEG), electrooculographic (EOG), and electromyographic (EMG) measurements were obtained during sleep in 10 healthy volunteer subjects. Spectral microstructure of alpha activity during DR showed a significant maximum power with respect to REM-alpha bursts for the components in the 9.7-10.9 Hz range, whereas REM-alpha bursts reached their maximum statistical differentiation from the sleep onset alpha activity at the components between 7.8 and 8.6 Hz. Furthermore, the maximum energy over occipital regions appeared in a different spectral component in each brain activation state, namely, 10.1 Hz in drowsiness and 8.6 Hz in REM sleep. These results provide quantitative information for differentiating the drowsiness alpha activity and REM-alpha by studying their microstructural properties. On the other hand, these data suggest that the spectral microstructure of alpha activity during sleep onset and REM sleep could be a useful index to implement in automatic classification algorithms in order to improve the differentiation between the two brain states.


2004 ◽  
Vol 36 (05) ◽  
Author(s):  
N Albrecht ◽  
OP Hornung ◽  
F Regen ◽  
H Danker-Hopfe ◽  
M Schreqdl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document