scholarly journals Glucose‐6‐Phosphate‐Dehydrogenase Blockers Attenuate Inositol Triphosphate Mediated Constriction of Pulmonary Arteries via Activation of Protein Kinase G

2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Anand Lakhkar ◽  
Sachin Gupte
2014 ◽  
Vol 306 (4) ◽  
pp. L383-L391 ◽  
Author(s):  
Dhara Patel ◽  
Sharath Kandhi ◽  
Melissa Kelly ◽  
Boon Hwa Neo ◽  
Michael S. Wolin

The activity of glucose-6-phosphate dehydrogenase (G6PD) controls a vascular smooth muscle relaxing mechanism promoted by the oxidation of cytosolic NADPH, which has been associated with activation of the 1α form of protein kinase G (PKG-1α) by a thiol oxidation-elicited subunit dimerization. This PKG-1α-activation mechanism appears to contribute to responses of isolated endothelium-removed bovine pulmonary arteries (BPA) elicited by peroxide, cytosolic NADPH oxidation resulting from G6PD inhibition, and hypoxia. Dehydroepiandrosterone (DHEA) is a steroid hormone with pulmonary vasodilator activity, which has beneficial effects in treating pulmonary hypertension. Because multiple mechanisms have been suggested for the vascular effects of DHEA and one of the known actions of DHEA is inhibiting G6PD, we investigated whether it promoted relaxation associated with NADPH oxidation, PKG-1α dimerization, and PKG activation detected by increased vasodilator-stimulated phosphoprotein (VASP) phosphorylation. Relaxation of BPA to DHEA under aerobic or hypoxic conditions was associated with NADPH oxidation, PKG-1α dimerization, and increased VASP phosphorylation. The vasodilator activity of DHEA was markedly attenuated in pulmonary arteries and aorta from a PKG knockin mouse containing a serine in place of a cysteine involved in PKG dimerization. DHEA promoted increased PKG dimerization in lungs from wild-type mice, which was not detected in the PKG knockin mouse model. Thus PKG-1α dimerization is a major contributing factor to the vasodilator actions of DHEA and perhaps its beneficial effects in treating pulmonary hypertension.


2016 ◽  
Vol 311 (4) ◽  
pp. H904-H912 ◽  
Author(s):  
Sukrutha Chettimada ◽  
Sachindra Raj Joshi ◽  
Vidhi Dhagia ◽  
Alessandro Aiezza ◽  
Thomas M. Lincoln ◽  
...  

Homeostatic control of vascular smooth muscle cell (VSMC) differentiation is critical for contractile activity and regulation of blood flow. Recently, we reported that precontracted blood vessels are relaxed and the phenotype of VSMC is regulated from a synthetic to contractile state by glucose-6-phosphate dehydrogenase (G6PD) inhibition. In the current study, we investigated whether the increase in the expression of VSMC contractile proteins by inhibition and knockdown of G6PD is mediated through a protein kinase G (PKG)-dependent pathway and whether it regulates blood pressure. We found that the expression of VSMC-restricted contractile proteins, myocardin (MYOCD), and miR-1 and miR-143 are increased by G6PD inhibition or knockdown. Importantly, RNA-sequence analysis of aortic tissue from G6PD-deficient mice revealed uniform increases in VSMC-restricted genes, particularly those regulated by the MYOCD-serum response factor (SRF) switch. Conversely, expression of Krüppel-like factor 4 (KLF4) is decreased by G6PD inhibition. Interestingly, the G6PD inhibition-induced expression of miR-1 and contractile proteins was blocked by Rp-β-phenyl-1, N2-etheno-8-bromo-guanosine-3′,5′-cyclic monophosphorothioate, a PKG inhibitor. On the other hand, MYOCD and miR-143 levels are increased by G6PD inhibition through a PKG-independent manner. Furthermore, blood pressure was lower in the G6PD-deficient compared with wild-type mice. Therefore, our results suggest that the expression of VSMC contractile proteins induced by G6PD inhibition occurs via PKG1α-dependent and -independent pathways.


2013 ◽  
Vol 305 (3) ◽  
pp. H330-H343 ◽  
Author(s):  
Boon Hwa Neo ◽  
Dhara Patel ◽  
Sharath Kandhi ◽  
Michael S. Wolin

The activity of glucose-6-phosphate dehydrogenase (G6PD) appears to control a vascular smooth muscle relaxing mechanism regulated through cytosolic NADPH oxidation. Since our recent studies suggest that thiol oxidation-elicited dimerization of the 1α form of protein kinase G (PKG1α) contributes to the relaxation of isolated endothelium-removed bovine pulmonary arteries (BPA) to peroxide and responses to hypoxia, we investigated whether cytosolic NADPH oxidation promoted relaxation by PKG1α dimerization. Relaxation of BPA to G6PD inhibitors 6-aminonicotinamide (6-AN) and epiandrosterone (studied under hypoxia to minimize basal levels of NADPH oxidation and PKG1α dimerization) was associated with increased PKG1α dimerization and PKG-mediated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. Depletion of PKG1α by small inhibitory RNA (siRNA) inhibited relaxation of BPA to 6-AN and attenuated the increase in VASP phosphorylation. Relaxation to 6-AN did not appear to be altered by depletion of soluble guanylate cyclase (sGC). Depletion of G6PD, thioredoxin-1 (Trx-1), and Trx reductase-1 (TrxR-1) in BPA with siRNA increased PKG1α dimerization and VASP phosphorylation and inhibited force generation under aerobic and hypoxic conditions. Depletion of TrxR-1 with siRNA inhibited the effects of 6-AN and enhanced similar responses to peroxide. Peroxiredoxin-1 depletion by siRNA inhibited PKG dimerization to peroxide, but it did not alter PKG dimerization under hypoxia or the stimulation of dimerization by 6-AN. Thus regulation of cytosolic NADPH redox by G6PD appears to control PKG1α dimerization in BPA through its influence on Trx-1 redox regulation by the NADPH dependence of TrxR-1. NADPH regulation of PKG dimerization may contribute to vascular responses to hypoxia that are associated with changes in NADPH redox.


2010 ◽  
Vol 299 (4) ◽  
pp. H1235-H1241 ◽  
Author(s):  
Boon Hwa Neo ◽  
Sharath Kandhi ◽  
Michael S. Wolin

We have previously provided evidence that hydrogen peroxide (H2O2) stimulates soluble guanylate cyclase (sGC) under conditions where it relaxes isolated endothelium-removed bovine pulmonary arteries (BPAs). Since it was recently reported that H2O2 induces coronary vasorelaxation associated with a nitric oxide/cGMP-independent thiol oxidation/subunit dimerization-elicited activation of protein kinase G (PKG), we investigated whether this mechanism participates in the relaxation of BPAs to H2O2. BPAs precontracted with serotonin (incubated under hypoxia to lower endogenous H2O2) were exposed to increasing concentrations of H2O2. It was observed that 0.1–1 mM H2O2 caused increased PKG dimerization and relaxation. These responses were associated with increased phosphorylation of vasodilator-stimulated phosphoprotein (VASP) at the serine-239 site known to be mediated by PKG. Treatment of BPAs with 1 mM DTT attenuated PKG dimerization, VASP phosphorylation, and relaxation to H2O2. An organoid culture of BPAs for 48 h with 10 μM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a heme oxidant inhibitor of sGC activation, depleted sGC expression by 85%, associated with a 67% attenuation of VASP phosphorylation and 48% inhibition of relaxation elicited by 100 μM H2O2. Thus both a sGC activation/cGMP-dependent and a thiol oxidation subunit dimerization/cGMP-independent activation of PKG appear to contribute to the relaxation of BPAs elicited by H2O2.


Sign in / Sign up

Export Citation Format

Share Document