Osmotically driven prey disintegration in the gastrovascular cavity of the green hydra by a pore‐forming protein

2007 ◽  
Vol 22 (1) ◽  
pp. 207-214 ◽  
Author(s):  
Daniel Sher ◽  
Yelena Fishman ◽  
Naomi Melamed‐Book ◽  
Mingliang Zhang ◽  
Eliahu Zlotkin
Author(s):  
K.W. Lee ◽  
R.H. Meints ◽  
D. Kuczmarski ◽  
J.L. Van Etten

The physiological, biochemical, and ultrastructural aspects of the symbiotic relationship between the Chlorella-like algae and the hydra have been intensively investigated. Reciprocal cross-transfer of the Chlorellalike algae between different strains of green hydra provide a system for the study of cell recognition. However, our attempts to culture the algae free of the host hydra of the Florida strain, Hydra viridis, have been consistently unsuccessful. We were, therefore, prompted to examine the isolated algae at the ultrastructural level on a time course.


2007 ◽  
Vol 55 (1) ◽  
pp. 77-79 ◽  
Author(s):  
Goran Kovačević ◽  
Mirjana Kalafatić ◽  
Nikola Ljubešić
Keyword(s):  

Symbiosis ◽  
2020 ◽  
Vol 82 (3) ◽  
pp. 189-199
Author(s):  
Siao Ye ◽  
Meenakshi Bhattacharjee ◽  
Evan Siemann

1986 ◽  
Vol 86 (1) ◽  
pp. 273-286 ◽  
Author(s):  
M. Rahat ◽  
V. Reich

Host/symbiont specificity has been investigated in non-symbiotic and aposymbiotic brown and green hydra infected with various free-living and symbiotic species and strains of Chlorella and Chlorococcum. Morphology and ultrastructure of the symbioses obtained have been compared. Aposymbiotic Swiss Hydra viridis and Japanese H. magnipapillata served as controls. In two strains of H. attenuata stable hereditary symbioses were obtained with Chlorococcum isolated from H. magnipapillata. In one strain of H. vulgaris, in H. oligactis and in aposymbiotic H. viridis chlorococci persisted for more than a week. Eight species of free-living Chlorococcum, 10 symbiotic and 10 free-living strains of Chlorella disappeared from the brown hydra within 1–2 days. In H. magnipapillata there was a graded distribution of chlorococci along the polyps. In hypostomal cells there were greater than 30 algae/cell while in endodermal cells of the mid-section or peduncle less than 10 algae/cell were found. In H. attenuata the algal distribution was irregular, there were up to five chlorocci/cell, and up to 20 cells/hydra hosted algae. In the dark most cells of Chlorococcum disappeared from H. magnipapillata and aposymbiotic hydra were obtained. Chlorococcum is thus an obligate phototroph, and host-dependent heterotrophy is not required for the preservation of a symbiosis. The few chlorococci that survived in the dark seem to belong to a less-demanding physiological strain. In variance with known Chlorella/H. viridis endosymbioses the chlorococci in H. magnipapillata and H. attenuata were tightly enveloped in the vacuolar membrane of the hosting cells with no visible perialgal space. Chlorococcum reproduced in these vacuoles and up to eight daughter cells were found within the same vacuole. We suggest that the graded or scant distribution of chlorococci in the various brown hydra, their inability to live in H. viridis and the inability of the various chlorellae to live in brown hydra are the result of differences in nutrients available to the algae in the respective hosting cells. We conclude that host/symbiont specificity and the various forms of interrelations we show in green and brown hydra with chlorococci and chlorellae are based on nutritional-ecological factors. These interrelations demonstrate successive stages in the evolution of stable obligatoric symbioses from chance encounters of preadapted potential cosymbionts.


1986 ◽  
Vol 85 (1) ◽  
pp. 187-195
Author(s):  
P. Bossert ◽  
K.W. Dunn

In observations on three strains of green hydra, the host and the algal mitotic index is closely coordinated only for the smallest. As the hydra strain size increases the coordination of host and algal mitosis progressively breaks down, first in timing for a medium-sized strain and then in rate for a large strain. Despite disparities between host and algal mitotic index, the number of algae per host cell remains constant in all strains during the interval measured. To account for this constancy we suggest that the hydra may either prolong the duration of the algal tetraspore stage or cull excess algae.


1967 ◽  
Vol 2 (4) ◽  
pp. 563-572
Author(s):  
D. B. SLAUTTERBACK

The apical cytoplasm of absorptive cells in hydra gastroderm contains numerous vesicles having a discoidal shape, an asymmetrical membrane and a peculiar coat firmly attached to the luminal surface of the membrane. The coat of these ‘discoidal coated vesicles’ consists of a highly ordered array of subunits made up of ‘pegs’ and globules. That these vesicles are involved in selective absorption and transport of materials from the gastrovascular cavity can be seen readily using ferritin as tracer. They are also involved in the uptake of particulate glycogen and the phagocytosis and possibly the subsequent digestion of complex food droplets. It may reasonably be supposed that the array of the coat subunits indicates a similar array of the molecular constituents of the membrane to which it is attached. In tangential sections of the membrane a compressed hexagonal lattice is seen which could fit the coat array.


Author(s):  
Heinz A. Lowenstam ◽  
Stephen Weiner

The phylum Cnidaria or Coelenterates includes sea anemones, jellyfish, hydras, sea fans, and, of course, the corals. With few exceptions they are all marine organisms and most are inhabitants of shallow water. In spite of the great variation in shape, size, and mode of life, they all possess the same basic metazoan structural features: an internal space for digestion (gastrovascular cavity or coelenteran), a mouth, and a circle of tentacles, which are really just an extension of the body wall. The body wall in turn is composed of three layers: an outer layer of epidermis, an inner layer of cells lining the gastrovascular cavity, and, sandwiched between them, a so-called mesoglea (Barnes 1980). All these features are present in both of the basic structural types: the sessile polyp and the free-swiming medusa. During their life cycle, some cnidarians exhibit one or the other structural type whereas others pass through both. Most Cnidaria have no mineralized deposits. The ones that, to date, are known to have mineralized deposits are listed in Table 5.1. They are found in both the free-swimming medusae and the sessile polyps. Not surprisingly, these have very different types of mineralized deposits. In the medusae they are located exclusively within the statocyst where they constitute an important part of the organism’s gravity perception apparatus. Interestingly the statoconia of the Hydrozoa, examined to date for their major elemental compositions only, are all composed of amorphous Mg-Ca-phosphate, whereas those of the Scyphozoa and Cubozoa are composed of calcium sulfate. Calcium sulfate minerals (presumably gypsum) are not commonly formed by organisms and the only other known occurrence is in the Gamophyta among the Protoctista. Spangenberg (1976) and her colleagues have expertly documented this phenomenon in the Cnidaria. (For a more detailed discussion of mineralization and gravity perception see Chapter 11.) The predominant mineralized hard part associated with the sessile polyps is skeletal. These can take the form of skeletons composed of individual spicules, spicule aggregates, or massive skeletons. They are composed of aragonite, calcite, or both.


Sign in / Sign up

Export Citation Format

Share Document