The double‐edged sword role of TGF‐β signaling pathway between intrauterine inflammation and cranial neural crest development

2021 ◽  
Vol 36 (1) ◽  
Author(s):  
Haiyang Li ◽  
Denglu Long ◽  
Guohua Lv ◽  
Xin Cheng ◽  
Guang Wang ◽  
...  
2011 ◽  
Vol 356 (1) ◽  
pp. 238-239 ◽  
Author(s):  
Crystal Rogers ◽  
Marianne Bronner-Fraser

Development ◽  
2000 ◽  
Vol 127 (13) ◽  
pp. 2873-2882 ◽  
Author(s):  
R.A. Cornell ◽  
J.S. Eisen

We examined the role of Delta signaling in specification of two derivatives in zebrafish neural plate: Rohon-Beard spinal sensory neurons and neural crest. deltaA-expressing Rohon-Beard neurons are intermingled with premigratory neural crest cells in the trunk lateral neural plate. Embryos homozygous for a point mutation in deltaA, or with experimentally reduced delta signalling, have supernumerary Rohon-Beard neurons, reduced trunk-level expression of neural crest markers and lack trunk neural crest derivatives. Fin mesenchyme, a putative trunk neural crest derivative, is present in deltaA mutants, suggesting it segregates from other neural crest derivatives as early as the neural plate stage. Cranial neural crest derivatives are also present in deltaA mutants, revealing a genetic difference in regulation of trunk and cranial neural crest development.


2019 ◽  
Vol 69 ◽  
pp. 176-189 ◽  
Author(s):  
Yuqi Yan ◽  
Xiao-tan Zhang ◽  
Guang Wang ◽  
Xin Cheng ◽  
Yu Yan ◽  
...  

2002 ◽  
Vol 159 (5) ◽  
pp. 867-880 ◽  
Author(s):  
Lisette Hari ◽  
Véronique Brault ◽  
Maurice Kléber ◽  
Hye-Youn Lee ◽  
Fabian Ille ◽  
...  

β-Catenin plays a pivotal role in cadherin-mediated cell adhesion. Moreover, it is a downstream signaling component of Wnt that controls multiple developmental processes such as cell proliferation, apoptosis, and fate decisions. To study the role of β-catenin in neural crest development, we used the Cre/loxP system to ablate β-catenin specifically in neural crest stem cells. Although several neural crest–derived structures develop normally, mutant animals lack melanocytes and dorsal root ganglia (DRG). In vivo and in vitro analyses revealed that mutant neural crest cells emigrate but fail to generate an early wave of sensory neurogenesis that is normally marked by the transcription factor neurogenin (ngn) 2. This indicates a role of β-catenin in premigratory or early migratory neural crest and points to heterogeneity of neural crest cells at the earliest stages of crest development. In addition, migratory neural crest cells lateral to the neural tube do not aggregate to form DRG and are unable to produce a later wave of sensory neurogenesis usually marked by the transcription factor ngn1. We propose that the requirement of β-catenin for the specification of melanocytes and sensory neuronal lineages reflects roles of β-catenin both in Wnt signaling and in mediating cell–cell interactions.


1992 ◽  
Vol 185 (6) ◽  
Author(s):  
Pete Jeffs ◽  
Karen Jaques ◽  
Mark Osmond

2017 ◽  
Author(s):  
Shigeru Okuhara ◽  
Anahid A. Birjandi ◽  
Hadeel Adel Al-Lami ◽  
Tomoko Sagai ◽  
Takanori Amano ◽  
...  

AbstractThe tongue is a highly specialized muscular organ important for breathing, speech, taste and swallowing. The secreted signaling molecule Sonic hedgehog (Shh) is expressed in dorsal tongue epithelium from the initial developmental stage. In this study, we utilized a series of genetic approaches to investigate the role of Shh during mouse tongue formation. Temporal-specific global deletion of Shh demonstrated a functional requirement for normal patterning of the intrinsic tongue muscles and establishment of the lingual tendon. These defects were reproduced in the mutant with a specific loss of signaling in oropharyngeal epithelium by a Shh cis-enhancer. In these mutants, Ptch1 was lost in the underlying cranial neural crest (CNC)-derived mesenchymal lineage. The importance of Shh was confirmed by generating tissue-specific deletions in the ciliopathy gene Ofd1, which transduces Shh signaling. These results revealed Shh roles in patterning of the mesodermal intrinsic tongue muscles through CNC-derived mesenchyme, including the lingual tendon.


2021 ◽  
Vol 15 ◽  
Author(s):  
Rachel A. Keuls ◽  
Ronald J. Parchem

Neural crest development involves a series of dynamic, carefully coordinated events that result in human disease when not properly orchestrated. Cranial neural crest cells acquire unique multipotent developmental potential upon specification to generate a broad variety of cell types. Studies of early mammalian neural crest and nervous system development often use the Cre-loxP system to lineage trace and mark cells for further investigation. Here, we carefully profile the activity of two common neural crest Cre-drivers at the end of neurulation in mice. RNA sequencing of labeled cells at E9.5 reveals that Wnt1-Cre2 marks cells with neuronal characteristics consistent with neuroepithelial expression, whereas Sox10-Cre predominantly labels the migratory neural crest. We used single-cell mRNA and single-cell ATAC sequencing to profile the expression of Wnt1 and Sox10 and identify transcription factors that may regulate the expression of Wnt1-Cre2 in the neuroepithelium and Sox10-Cre in the migratory neural crest. Our data identify cellular heterogeneity during cranial neural crest development and identify specific populations labeled by two Cre-drivers in the developing nervous system.


Sign in / Sign up

Export Citation Format

Share Document