Neuromuscular Effects of Beta-adrenergic Blockers and Their Interaction with Skeletal Muscle Relaxants

1968 ◽  
Vol 29 (3) ◽  
pp. 484-492 ◽  
Author(s):  
Jose E. Usubiaga
1978 ◽  
Vol 44 (2) ◽  
pp. 190-194 ◽  
Author(s):  
A. Koo ◽  
I. Y. Liang

The microcirculation of the spinotrapezius muscle in normal and cold-acclimated (4 degrees C) rats was observed by an in vivo microscopic technique. The responses of the arterioles and venules in the skeletal muscle microcirculation to topical application of norepinephrine (NE) were recorded by a photomicrographic method. Results show that the skeletal muscle microcirculation possesses both alpha- and beta-adrenergic vascular receptors. Stimulation of the alpha-receptor results in vasoconstriction, and of the beta-receptor, vasodilatation. These microvascular responses are antagonized by specific alpha- and beta-adrenergic blockers. Cold-acclimation (4 degrees C) for 3 wk decreases the responses of the skeletal muscle microvessels to NE stimulation. This diminished sensitivity is due to an attenuation of the alpha-adrenergic receptor mechanism.


1971 ◽  
Vol 68 (1_Suppla) ◽  
pp. S5-S38 ◽  
Author(s):  
Helmuth Vorherr

ABSTRACT In lactating rats and rabbits the mode of antagonism of sympathomimetics, angiotensin or pain toward oxytocin-induced milk-ejection was investigated. In rats intra-arterial (intrafemoral) doses of 0.01–0.02 μg or intravenous (iv) doses of 0.1–0.5 μg of either epinephrine, isoproterenol, norepinephrine, angiotensin or 10 μg of phenylephrine injected simultaneously with, or 30 seconds before an oxytocin dose (10 μU intrafemoral, 300 μU iv) greatly inhibited or suppressed the oxytocin response. A 15 second pain stimulus caused moderate inhibition. With alpha-receptor blockade pain, epinephrine, isoproterenol, norepinephrine, phenylephrine and angiotensin inhibition were, respectively, 70%, 75%, 100%, 40%, 0% and 100%. Under beta-receptor blockade the corresponding values were 14%, 40%, 0%, 70%, 100% and 100%; with simultaneous intrafemoral injections neither catecholamine was inhibitory toward oxytocin. In corresponding rabbit experiments approximately 10-fold higher iv drug dosages were applied and similar results were observed. In both species, combined alpha and beta-receptor blockade nearly eliminated the antagonistic actions of sympathomimetics toward oxytocin, whereas angiotensin inhibition persisted unchanged. The results indicate: 1) Mammary myoepithelial cells contain beta-adrenergic receptors but no alpha-receptors; 2) Inhibition of oxytocin-induced milk-ejection by isoproterenol and phenylephrine is meditated through stimulation of myoepithelial beta-receptors (myoepithelial relaxation) and vascular alpha-receptors (vasoconstriction), respectively; 3) Epinephrine and norepinephrine inhibition of milk-ejection is due to stimulation of vascular alpha-receptors and myoepithelial beta-receptors; 4) Angiotensin effects are unrelated to adrenergic receptor mechanisms; 5) Administration of both alpha and beta-adrenergic blockers is desirable for stabilizing the sensitivity of the oxytocin milk-ejection assay preparation against interference from endogenous or exogenous catecholamines; 6) Other than using adrenergic blockers, pharmacologic doses of oxytocin can correct nursing difficulties in animals and man with hyperfunction of the adrenal-sympathetic system.


1971 ◽  
Vol 34 (8) ◽  
pp. 458-462 ◽  
Author(s):  
K C Wong ◽  
Steven R. Wyte ◽  
Wayne E. Martin ◽  
Edward W. Crawford

1984 ◽  
Vol 246 (2) ◽  
pp. E160-E167 ◽  
Author(s):  
R. S. Williams ◽  
M. G. Caron ◽  
K. Daniel

To determine the relationship between oxidative capacity and characteristics of beta-adrenergic receptors (beta AR) in skeletal muscle, selected biochemical variables were quantitated in particulate preparations from soleus and gastrocnemius muscle from rats subjected to 10 wk of treadmill running and from three control groups: free-fed, sedentary controls; food-restricted, pair-weighted controls; and animals trained by swimming. Beta AR density and isoproterenol-stimulated adenylate cyclase activity were considerably greater in the slow-twitch oxidative soleus muscle than in the mixed fiber type gastrocnemius in animals from each group (P less than 0.005). Succinic dehydrogenase (SDH) activity of gastrocnemius was increased 23-42% (P less than 0.05) in runners over each of the control groups, concommitantly with a 15-27% increase (P less than 0.05) in beta AR density (Bmax for binding of 125I-cyanopindolol). In 24 animals from all four treatment groups, there was a significant correlation between SDH activity and beta AR density (r = 0.68; P less than 0.001). We conclude that BAR density correlates positively with oxidative capacity in skeletal muscle, but further studies are required to determine the physiological importance of these differences.


2009 ◽  
Vol 17 (6) ◽  
pp. 287-292 ◽  
Author(s):  
Usman Javed ◽  
Prakash C. Deedwania

1982 ◽  
Vol 60 (7) ◽  
pp. 877-884 ◽  
Author(s):  
John T. Hamilton ◽  
Peggy A. Stone

Changing trends in the use of anxiolytic agents and recent reassessment of their neuropharmacological activity has prompted this evaluation of the peripheral neuromuscular activity of the benzodiazepine, flurazepam. In previous reports we have documented peripheral neuromuscular activity of chlordiazepoxide and diazepam on the rat phrenic nerve diaphragm preparation. The water soluble benzodiazepine, flurazepam, has been studied on the rat phrenic nerve diaphragm and frog rectus abdominis in vitro. On the former preparation flurazepam enhanced and then blocked the response to indirect electrical stimulation (0.2 Hz) and readily blocked posttetanic potentiation and prevented the preparation from sustaining a tetanic contracture (30 Hz). On the later preparation, flurazepam blocked in a noncompetitive manner the response of the frog muscle to applied cholinergic agonists. Studies on the rat preparation with the neuromuscular blocking drug succinylcholine have shown an unexpected protection against blockade in preparations pretreated with low concentrations of flurazepam. This was not observed when flurazepam was given prior to d-tubocurarinc. The application of adenosine to rat diaphragms during steady-state partial blockade caused by flurazepam or d-tubocurarine showed an inhibiting action of adenosine which was reversed by theophylline. Pretreatment of rat preparations with dipyridamole significantly enhanced the blocking action of standard concentrations of succinylcholine.These results, along with those in the literature, encourage a reassessment of the action of purines and benzodiazepines on skeletal muscle and encourage a consideration of a possible involvement of purinergic neuromodulation of transmission which is unmasked when the safety factor for transmission is altered by muscle relaxants. The possible clinical significance of protection against succinylcholine by benzodiazepines is noted.


2000 ◽  
pp. 120-147
Author(s):  
William H. Frishman ◽  
Angela Cheng-Lai ◽  
Julie Chen

2004 ◽  
Vol 73 (2) ◽  
pp. 181-185 ◽  
Author(s):  
M. Frydrych ◽  
L. Bartošová ◽  
T. Florian ◽  
J. Nečas ◽  
L. Bartošíková ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document