Kinetics of Methoxyflurane Biotransformation with Reference to Substrate Inhibition

1976 ◽  
Vol 44 (5) ◽  
pp. 380-384 ◽  
Author(s):  
Lawrence Adler ◽  
Burnell R. Brown ◽  
Mary F. Thompson
2020 ◽  
Vol 319 (1) ◽  
pp. R43-R49
Author(s):  
Xi Lin ◽  
Pasha A. Lyvers Peffer ◽  
Jason Woodworth ◽  
Jack Odle

γ-Butyrobetaine hydroxylase (γ-BBH) is the last limiting enzyme of the l-carnitine biosynthesis pathway and plays an important role in catalyzing the hydroxylation of γ-butyrobetaine (γ-BB) to l-carnitine. To study the developmental effect of substrate concentration on the enzyme’s specific activity, kinetics of γ-BBH were measured in liver and kidney from newborn and 1-, 7-, 21-, 35-, 56-, and 210-day-old domestic pigs. Fresh tissue homogenates were assayed under nine concentrations of γ-BB from 0 to 1.5 mM. Substrate inhibition associated with age was observed at ≥0.6 mM of γ-BB. Hepatic activity was low at birth but increased after 1 day. By 21 days, the activity rose by 6.6-fold ( P < 0.05) and remained constant after 56 days. Renal activity was higher than in liver at birth but remained constant through 35 days. By 56 days, the velocity increased by 44% over the activity at birth ( P < 0.05). The apparent Km for γ-BB at birth on average was 2.8-fold higher than at 1 day. The Km value was 60% higher in kidney than liver during development but showed no difference in adult pigs. The total organ enzyme activity increased by 130-fold for liver and 18-fold for kidney as organ weight increased from birth to 56 days. In conclusion, age and substrate affect γ-BBH specific activity and Km for γ-BB in liver and kidney. Whereas the predominant organ for carnitine synthesis is likely the kidney at birth, the liver appears to predominate after the pig exceeds 7 days of age.


1973 ◽  
Vol 51 (1) ◽  
pp. 44-55 ◽  
Author(s):  
Frank J. Moffet ◽  
W. A. Bridger

Initial rate kinetic studies of succinyl coenzyme A synthetase of E. coli in the direction of succinyl-CoA cleavage are consistent with the operation of a partially random sequential kinetic mechanism with initial binding of ADP followed by random association of succinyl-CoA and Pi. The mechanism is analogous to that proposed previously for the succinyl-CoA formation reaction, and thus the kinetic mechanism of the overall reversible succinyl-CoA synthetase reaction appears to be symmetrical.Studies of the kinetics of [Formula: see text] isotope exchange at equilibrium show that this partially random sequential kinetic mechanism is not an exclusive pathway. [Formula: see text] isotope exchange rates did not show complete substrate inhibition when CoA or succinate was varied in constant ratio with Pi. However, when CoA or succinate was varied in constant ratio with succinyl-CoA, nearly complete substrate inhibition was observed. These results can be interpreted in terms of a wide variety of minor pathways of substrate binding and product release available to the enzyme under various conditions.


1971 ◽  
Vol 124 (4) ◽  
pp. 701-711 ◽  
Author(s):  
T. N. Palmer

1. Acid α-glucosidase was purified 3500-fold from rabbit muscle. 2. The enzyme was activated by cations, the degree of activation varying with the substrate. Enzyme action on glycogen was most strongly activated and activation was apparently of a non-competitive type. With rabbit liver glycogen as substrate, the relative Vmax. increased 15-fold, accompanied by an increase in Km from 8.3 to 68.6mm-chain end over the cation range 2–200mm-Na+ at pH4.5. Action on maltose was only moderately activated (1.3-fold, non-competitively) and action on maltotriose was marginally and competitively inhibited. 3. The pH optimum at 2mm-Na+ was 4.5 (maltose) and 5.1 (glycogen). Cation activation of enzyme action on glycogen was markedly pH-dependent. At 200mm-Na+, the pH optimum was 4.8 and activity was maximally stimulated in the range pH4.5–3.3. 4. Glucosidase action on maltosaccharides was associated with pronounced substrate inhibition at concentrations exceeding 5mm. Of the maltosaccharides tested, the enzyme showed a preference for p-nitrophenyl α-maltoside (Km 1.2mm) and maltotriose (Km 1.8mm). The extrapolated Km for enzyme action on maltose was 3.7mm. 5. The macromolecular polysaccharide substrate glycogen differed from linear maltosaccharide substrates in the kinetics of its interaction with the enzyme. Activity was markedly dependent on pH, cation concentration and polysaccharide structure. There was no substrate inhibition. 6. The enzyme exhibited constitutive α-1,6-glucanohydrolase activity. The Km for panose was 20mm. 7. The enzyme catalysed the total conversion of glycogen into glucose. The hydrolysis of α-1,6-linkages was apparently rate-limiting during the hydrolysis of glycogen. 8. Enzyme action on glycogen and maltose released the α-anomer of d-glucose. 9. The results are discussed in terms of the physiological role of acid α-glucosidase in lysosomal glycogen catabolism.


1980 ◽  
Vol 189 (3) ◽  
pp. 653-654 ◽  
Author(s):  
B Andersen

Studies of steady-state kinetics of fumarase in the usual substrate-concentration range from 0.1 Km to 10 Km and in the high substrate-concentration range from 10 Km to 200 Km are described. The purpose is to investigate reports of substrate inhibition and oscillatory kinetics. In the normal substrate-concentration range, no deviations from hyperbolic kinetics were found, and in the extended concentration range, up to more than 200 times the Km value, no substrate inhibition was demonstrated. A discussion of the discrepancies between the mentioned reports of deviations from the hyperbolic kinetics and the present findings is given.


2014 ◽  
Vol 70 (6) ◽  
pp. 1129-1134 ◽  
Author(s):  
Peng Xu ◽  
Wencheng Ma ◽  
Hongjun Han ◽  
Baolin Hou ◽  
Shengyong Jia

A bacterial strain, QWE-5, which utilized naphthalene as its sole carbon and energy source, was isolated and identified as Streptomyces sp. It was a Gram-positive, spore-forming bacterium with a flagellum, with whole, smooth, convex and wet colonies. The optimal temperature and pH for QWE-5 were 35 °C and 7.0, respectively. The QWE-5 strain was capable of completely degrading naphthalene at a concentration as high as 100 mg/L. At initial naphthalene concentrations of 10, 20, 50, 80 and 100 mg/L, complete degradation was achieved within 32, 56, 96, 120 and 144 h, respectively. Kinetics of naphthalene degradation was described using the Andrews equation. The kinetic parameters were as follows: qmax (maximum specific degradation rate) = 1.56 h−1, Ks (half-rate constant) = 60.34 mg/L, and KI (substrate-inhibition constant) = 81.76 mg/L. Metabolic intermediates were identified by gas chromatography and mass spectrometry, allowing a new degradation pathway for naphthalene to be proposed. In this pathway, monooxygenation of naphthalene yielded naphthalen-1-ol. Further degradation by Streptomyces sp. QWE-5 produced acetophenone, followed by adipic acid, which was produced as a combination of decarboxylation and hydroxylation processes.


Sign in / Sign up

Export Citation Format

Share Document