Succinyl Coenzyme A Synthetase of Escherichia coli: Initial Rate Kinetics of Succinyl-CoA Cleavage and Isotope Exchange Studies

1973 ◽  
Vol 51 (1) ◽  
pp. 44-55 ◽  
Author(s):  
Frank J. Moffet ◽  
W. A. Bridger

Initial rate kinetic studies of succinyl coenzyme A synthetase of E. coli in the direction of succinyl-CoA cleavage are consistent with the operation of a partially random sequential kinetic mechanism with initial binding of ADP followed by random association of succinyl-CoA and Pi. The mechanism is analogous to that proposed previously for the succinyl-CoA formation reaction, and thus the kinetic mechanism of the overall reversible succinyl-CoA synthetase reaction appears to be symmetrical.Studies of the kinetics of [Formula: see text] isotope exchange at equilibrium show that this partially random sequential kinetic mechanism is not an exclusive pathway. [Formula: see text] isotope exchange rates did not show complete substrate inhibition when CoA or succinate was varied in constant ratio with Pi. However, when CoA or succinate was varied in constant ratio with succinyl-CoA, nearly complete substrate inhibition was observed. These results can be interpreted in terms of a wide variety of minor pathways of substrate binding and product release available to the enzyme under various conditions.

1948 ◽  
Vol 26b (2) ◽  
pp. 175-180 ◽  
Author(s):  
C. A. Winkler ◽  
A. W. Hay ◽  
A. L. Thompson

The principal reaction of methyl-bis-β-chloroethylamine in methanol is dimerization, which results in one chlorine from each molecule becoming ionic, but this is accompanied by slight alcoholysis. The rate-controlling step is believed to be the first order formation of an ethylenimonium ion which reacts rapidly with one of its kind to form dimer. The rate expression as calculated from initial rate constants is k (initial) = 4.0 × 1013e−19600/RThr.−1.


1970 ◽  
Vol 48 (7) ◽  
pp. 755-758 ◽  
Author(s):  
H. D. Engers ◽  
W. A. Bridger ◽  
N. B. Madsen

In order to confirm the kinetic mechanism which was proposed for rabbit muscle phosphorylase a on the basis of initial rate studies and UDP-glucose inhibition experiments, isotope exchange studies at equilibrium were performed, both in the presence and absence of the modifier AMP.Both the 14C-glucose [Formula: see text] and the [Formula: see text]1-phosphate equilibrium exchange rates increased to a maximum as the concentrations of the varied substrates became saturating, either in the presence or absence of AMP. The plateaus observed in these experiments indicate the lack of inhibition of the exchange of one pair of substrates when the concentration of the other substrate pair was raised, and confirms the proposed random addition of substrates to the enzyme.The fact that similar exchange rates were observed for either reaction direction reinforced the concept that rapid equilibrium conditions apply to the phosphorylase a mechanism; i.e. the interconversion of the ternary complexes tends to be the rate-limiting step in the reaction sequence.Maximal velocities determined from initial rate data reported in the previous paper agreed with those calculated from isotope exchange rates.


1954 ◽  
Vol 32 (4) ◽  
pp. 432-442 ◽  
Author(s):  
A. Orzechowski ◽  
K. E. MacCormack

A flow type apparatus was used for kinetic studies of the silver catalyzed oxidation of ethylene oxide (EtO) by oxygen at 274 °C. Using N2 as diluent the concentrations of O2 and ethylene oxide were varied independently from 9.9 to 79% and 2.35 to 9.4% respectively while a total pressure of 1 atmosphere was maintained. Flow rates were varied to give a range of contact times varying from 0.06 to 0.25 sec. It was shown that EtO is oxidized without previous dissociation into C2H4 and O2. The dependence of the initial rate of oxidation of EtO on reactant concentrations excludes isomerization of EtO (to acetalde hyde) as a main step in its oxidation, and a direct oxidation mechanism is suggested. The results of a few experiments to determine the extent of isomerization of EtO to acetaldehyde in the absence of oxygen are presented. No steady state could be achieved but the results may be used semiquantitatively to support the belief that isomerization is not the rate determining step in the oxidation of ethylene oxide.


2000 ◽  
Vol 345 (2) ◽  
pp. 393-399 ◽  
Author(s):  
Orla CUNNINGHAM ◽  
Michael G. GORE ◽  
Timothy J. MANTLE

The initial-rate kinetics of the flavin reductase reaction catalysed by biliverdin-IXβ reductase at pH 7.5 are consistent with a rapid-equilibrium ordered mechanism, with the pyridine nucleotide binding first. NADPH binding to the free enzyme was characterized using stopped-flow fluorescence quenching, and a Kd of 15.8 μM was calculated. Equilibrium fluorescence quenching experiments indicated a Kd of 0.55 μM, suggesting that an enzyme-NADPH encounter complex (Kd 15.8 μM) isomerizes to a more stable ‘nucleotide-induced’ conformation. The enzyme was shown to catalyse the reduction of FMN, FAD and riboflavin, with Km values of 52 μM, 125 μM and 53 μM, respectively. Lumichrome was shown to be a competitive inhibitor against FMN, with a Ki of 76 μM, indicating that interactions with the isoalloxazine ring are probably sufficient for binding. During initial experiments it was observed that both the flavin reductase and biliverdin reductase activities of the enzyme exhibit a sharp optimum at pH 5 in citrate buffer. An initial-rate study indicated that the enzyme obeys a steady-state ordered mechanism in this buffer. The initial-rate kinetics in sodium acetate at pH 5 are consistent with a rapid-equilibrium ordered mechanism, indicating that citrate may directly affect the enzyme's behaviour at pH 5. Mesobiliverdin XIIIα, a synthetic biliverdin which binds to flavin reductase but does not act as a substrate for the enzyme, exhibits competitive kinetics with FMN (Ki 0.59 μM) and mixed-inhibition kinetics with NADPH. This is consistent with a single pyridine nucleotide site and competition by FMN and biliverdin for a second site. Interestingly, flavin reductase/biliverdin-IXβ reductase has also been shown to exhibit ferric reductase activity, with an apparent Km of 2.5 μM for the ferric iron. The ferric reductase reaction requires NAD(P)H and FMN. This activity is intriguing, as haem cleavage in the foetus produces non-α isomers of biliverdin and ferric iron, both of which are substrates for flavin reductase/biliverdin-IXβ reductase.


1981 ◽  
Vol 193 (2) ◽  
pp. 485-492 ◽  
Author(s):  
F F Morpeth ◽  
F M Dickinson

Initial-rate measurements were made of the oxidations of pyridine-3-methanol and glycerol by NADP+ and of the reduction of the corresponding aldehydes by NADPH catalysed by pig kidney aldehyde reductase. In addition, a brief survey of the specificity of the enzyme towards aldehyde substrates and its sensitivity to the inhibitors ethacrynic acid, sodium barbitone and warfarin was made. The detailed kinetic work indicates a compulsory mechanism for aldehyde reduction, with NADPH binding before aldehyde. For alcohol oxidation, however, it is necessary to postulate the formation of kinetically significant amounts of binary complexes of the type enzyme-alcohol to explain the results. Thus, for alcohol oxidation random-order addition of substrates may occur. Inhibition studies of the kinetics of aldehyde reduction in the presence of the corresponding alcohol product provide further evidence for the existence of enzyme-alcohol complexes. Finally, detailed kinetic studies were made of the inhibition of pyridine-3-aldehyde reduction by sodium barbitone. The mechanism of the inhibition is discussed.


Sign in / Sign up

Export Citation Format

Share Document